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The Golden Ratio  

 The world we live in is extremely complex. Scientists, mathematicians, and historians 

have been searching for truths to explain these complexities since the beginning of time. Many 

people have spent their entire lives searching for patterns and relationships in nature. In the 

Divine Proportion we see a relationship in nature that creates balance and symmetry that has 

fascinated mathematicians and artists for centuries. In words, the Divine Proportion states that 

the whole is to the larger in exactly the same proportion as the larger is to the smaller. It can also 

be described by the Fibonocci Sequence in which the next term is found by adding the two 

previous terms. These relationships are interesting, but what does this tell us and why are they 

famous? These relationships suggest that there is a relationship between numbers and nature. 

These relationships among numbers appear in shapes, patterns, and dynamics in nature. This 

balance provides the foundations for things as simple as a work of art or as complicated to a 

strand of DNA. There are many aspects to the Divine Ratio and why the mysteries behind it have 

captured the eye of so many people before our time (Hemenway, 2005, p.11-27).  

 The Divine Proportion has been impressing researchers for centuries. This can explain 

the many names that all describe the same idea. The Divine Proportion is also called, Golden 

Mean, Golden Section, Golden Ratio, Golden Proportion, and Sacred Cut. These all describe the 

proportion that is mathematically defined as Ф (phi). Once again, this proportion is the 

relationship that two parts, one larger and one smaller, are to each as the whole is to the larger 

part. Historians do not know exactly when the discovery of the Golden Ratio was made. One can 

infer that the many names given to this relationship suggests that it was discovered multiple 



times by multiple groups of people. There is some evidence that the Golden Ration was used by 

the Egyptians to design the pyramids. It is also believed that the Greeks used it to construct 

Parthenon. Famous mathematicians such as Plato, Euclid, Fibonacci, and Pacioli studied the 

proportion and the relationship among numbers. Fibonacci is famous for discovering the 

Fibonacci sequence and related it to the Golden Ratio. Many artists during the Renaissance used 

the Divine Proportion to achieve balance and beauty in their paintings and sculptors. Many 

people believe that Leonardo da Vinci incorporated the Divine Proportion into The Last Supper 

and Mona Lisa. Even modern artists have used this ratio in their art. In the twentieth century, 

Mark Barr gave the ratio of the Divine Proportion the name Ф after the Greek mathematician and 

sculptor Phideas. The people listed are merely just a few among the many who contributed to 

discovering the Golden Ration and the many occurrences of it in nature (Hemenway, 2005, p.11-

27).  

 There are multiple ways in which the Golden Ratio can be defined. Perhaps the simplest 

way or the most common definition is that of finding the golden section of a straight line. This 

problem was originally solved in Euclid’s elements. Let a line AB of length l be divided into two 

segments by the point C. Let the lengths of AC and CB be a and b respectively. If C is a point 

such that l:a as a:b, C is the “golden cut” or the golden section of AB (Huntly, 1970, p.25). To 

divide a straight line in the golden section, note the following:  

 “Let AB be the given straight line. Draw BD=AB/2 perpendicular to AB. Join AD. With 

center D, radius, DB, draw an arc cutting DA in E. With center A, radius AE, draw an arc cutting 

AB in C. Then C is the golden section of AB.” (Huntly, 1970, p.27). Refer to the figure below: 



 

 

 

Proof that AC/CB is the golden ratio is given below.  

Proof: Let AB=2x. Then DB=x. By the Pythagorean theorem, AD=         =    . Thus,  

AE = AD – ED = x   - x (since ED is the radius of the circle with center D radius DB) 

AE = x     
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AC =       (since AE and AC are both radii of the same circle). 

So CB = AB – AC = 2x - x   + x = 3x-x    Thus, 
  

  
 

  

  
   

  

      
  

      

         
  

                     =           . Hence, AC/CB is the golden ratio. 

 

Using the geometrical representation of the golden section, we can calculate the numerical the 

value of Phi. In the above figure, let AC = x, CB = 1, so that AC/CB = x = Ф. Note that  

   

 
  

 

 
   ie.,           

The positive solution of this is   
      

 
 = 1.61803. Denote this as Ф (to 5 decimal places). 

Denote Ф׳ to be the negative solution. If, instead of CB = 1, we take AC = 1 and CB = x׳, then  
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׳ 
   i.e.,  ׳

 
+ x0 = 1 – ׳. 

The positive solution of this is x׳ = 
      

 
 = 0.61803. This, prefixed by the negative sign, we call 

Ф׳. So, Ф׳ turns out to be the negative reciprocal of Ф; that is, Ф*Ф1 - = ׳. For, 
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Phi is unique because it is the only number, which when diminished by unity, becomes its own 

reciprocal: 

Ф – 1 = 
 

 
  i.e.,                 
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Thus, Ф and Ф׳ are the solutions if           Take Ф to be the positive solution 
      

 
 and 

Ф׳ to be the negative solution
       

 
. Hence, Ф + Ф1 = ׳ and Ф * Ф1 - = ׳ (Huntley, 1970, p. 26).  

 There are many properties of the golden section that make for an interesting discussion, 

and perhaps add to its appeal and fascination. The golden section as defined previously, is the 

proportion 
      

 
 = 1.618… In this case we are looking at the positive root of the equation 

       . Note the following tables:  

    

So by the table we can see that            In general,             . In other words, 

each term of the sequence 1, Ф,               is the sum of the two previous terms.  This 

sequence, often called the Phi series, is both additive and geometrical which is one of the reasons 

why it plays such a huge role in nature (Ghyka, 1977, p.8). The ratio of each term to the previous 

term is approximately equal to Ф. This property occurs in the Fibonocci sequence. Here is a list 

of the first few numbers in the Fibonocci sequence:  

0,1,1,3,5,8,13,21,34,55,89,144,233,377… 
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Starting with the third term and looking at the ratios of each term to the previous term we have 

the following table: 

 

 As A and B get larger, B/A gets closer and closer to Phi. Hence, the Fibonocci sequence is 

closely related to the golden ratio.   

 Referring to the figure of the construction of the golden cut from above, we can construct 

the golden rectangle. If we form a square with side AC on the line AB and complete the rectangle 

we obtain a golden rectangle AHIB.  

 

A B B/A

1 2 2

2 3 1.5

3 5 1.666667

5 8 1.6

8 13 1.625

13 21 1.615385

21 34 1.619048

34 55 1.617647

55 89 1.618182

89 144 1.617978

144 233 1.618056

233 377 1.618026

377 610 1.618037
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If we continue to construct squares on the smaller side of the golden cut, i.e. CB, we will always 

get another golden rectangle. This process can go on infinitely. For example, in the figure below, 

GJIB is a golden rectangle and JGFI is a golden rectangle, and so on.  

 

 There are many examples of the golden rectangle in the real world. The Parthenon in 

Athens has dimensions that almost perfectly fit the golden rectangle’s dimensions. There is a lot 

of debate in which whether or not the dimensions of the golden rectangle is more aesthetically 

appealing to the eye. A German psychologist named Gustav Fechner did a lot of research on this 

matter. He made thousands of measurements of common rectangles that we see every day and 

discovered the average to be close to Phi. He measured books, playing cards, windows, etc. and 

came to the conclusion that most people prefer a certain rectangle design. These experiments 

were repeated by people who followed him and the results point to a popular preference for a 

rectangle with dimensions very close to those of the golden rectangle (Huntley, 1970, p. 63-65). 

As seen in the picture below, the dimensions of the Parthenon fit into a Golden Rectangle and its 

floor plan seems to be based on a square-root-of-5 rectangle (Hemenway, 2005, p.101).  
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There is another way to construct the golden rectangle. As we saw previously, the golden 

ratio can be obtained from any addictive series. Similarly, the golden rectangle can be obtained 

from an additive series of squares. 

 



Comparing the ratios of the sides we obtain: 
        

           
 ≈ 

  

  
≈ 1.620. Continuing the process to 

square number 13, the approximation is 
   

   
         (Huntley, 1970,  p.66). Something that 

is also seen in the picture is that the centers of the squares lie on a spiral. This spiral, called the 

logarithmic or Golden Spiral, is connected with other constructions dealing with the golden ratio 

and is said to be appealing to the eye (Huntley, 1970, p.66). The logarithmic spiral is constructed 

by repeating the process of constructing golden rectangles within golden rectangles (as in the 

figure on page 6) until a limiting rectangle is reached. This limiting rectangle appears to be a 

single point and is called the pole of the logarithmic, or golden, spiral (Huntley, 1970, p. 101). 

The golden spiral passes through each golden cut formed in the construction which is one 

example of the connection between the golden spiral and the golden ratio. Another interesting 

property of the golden spiral is that no matter how different two segments of the spiral are in 

size, they are the same in shape. The lengths of the sides of the squares formed in the 

construction form the Fibonacci series. The relation between the Fibonacci series and the golden 

spiral is just another way to relate the Fibonacci series to nature. The spiral can be found in many 

things in nature (Huntley, 1970, p. 102). Some examples include the shell of a chambered 

nautilus, the oxygyrus (a free-floating oceanic snail), hurricanes, ocean patterns, and the cochlea 

of the human inner ear (Hemenway, 2005, p. 129-131).  



 

 The golden ratio is a very interesting topic of discussion in mathematics. There are many 

fascinating things in our world that contain the golden ratio. The golden ratio is a great way to 

show students that math relates to everyday life. Even our bodies contain the golden ratio! The 

best way to get students interested in what they are learning is to relate it to them somehow. A 

project involving exploration of the golden ratio and how it is represented in nature would be a 

great way for students to have fun and learn math at the same time.  

 

http://upload.wikimedia.org/wikipedia/commons/1/16/Oxygyrus_keraudrenii.png
http://upload.wikimedia.org/wikipedia/commons/6/62/08hagupit_b.jpg
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