Assignment 12: Exploring Mathematics with Spreadsheets

By Rebecca L. Adcock

 

The Fibonacci sequence was identified way back in 1202 by a fellow named Leonardo Fibonacci. Although it is ŌjustÕ a sequence of numbers, as you will see, it also occurs in nature. First, letÕs look at the sequence É

You typically start the sequence with 1,1. We could sit here and generate these numbers using pencil and paper but itÕs a whole lot easier to plug this into a spreadsheet. Here

Õs the first 20 numbers in the sequence as created in an Excel spreadsheet:

 

Fibonnaci Sequence

 

 

1

 

1

 

2

 

3

 

5

 

8

 

13

 

21

 

34

 

55

 

89

 

144

 

233

 

377

 

610

 

987

 

1597

 

2584

 

 

 

 

I entered 1 and 1 in the first cells of my column and entered an equation of Ō=A3+A4Õ in the next cell. (Placing the cursor in the lower right corner of cell A5 and dragging downwards copies the formula.)

So far there is nothing remarkable about this simple set of numbers. But look what happens when you calculate the ratio between adjacent elements.

Fibonnaci Sequence

 

 

1

 

1

1

2

2

3

1.5

5

1.666666667

8

1.6

13

1.625

21

1.615384615

34

1.619047619

55

1.617647059

89

1.618181818

144

1.617977528

233

1.618055556

377

1.618025751

610

1.618037135

987

1.618032787

1597

1.618034448

2584

1.618033813

4181

1.618034056

6765

1.618033963

10946

1.618033999

17711

1.618033985

28657

1.61803399

46368

1.618033988

75025

1.618033989

121393

1.618033989

196418

1.618033989

317811

1.618033989

 

As the number of entries in the sequence, the ratio tends toward the same value, something in the neighborhood of 1.618033989. So what? This number has been around since the ancient Greeks and it is called the Golden Ratio (capitalized!). HereÕs how the story goes:

The Greeks considered a line segment to be divided into the Golden Ratio if the ratio of the shorter part to the longer part was the same as the ratio of the longer part to the whole line segment.

I created this sketch to show you what that meansÉ..


The Golden Ratio here has been rounded to 1.62.

 


LetÕs see what else we can discover about the Fibonacci sequence. Is there anything significant about the ratio between every other entry? (See the third column.)

 

Fibonnaci Sequence

 

 

 

 

1

 

 

1

1

 

2

2

2

3

1.5

3

5

1.666666667

2.5

8

1.6

2.66666667

13

1.625

2.6

21

1.615384615

2.625

34

1.619047619

2.61538462

55

1.617647059

2.61904762

89

1.618181818

2.61764706

144

1.617977528

2.61818182

233

1.618055556

2.61797753

377

1.618025751

2.61805556

610

1.618037135

2.61802575

987

1.618032787

2.61803714

1597

1.618034448

2.61803279

2584

1.618033813

2.61803445

4181

1.618034056

2.61803381

6765

1.618033963

2.61803406

10946

1.618033999

2.61803396

17711

1.618033985

2.618034

28657

1.61803399

2.61803399

46368

1.618033988

2.61803399

75025

1.618033989

2.61803399

121393

1.618033989

2.61803399

196418

1.618033989

2.61803399

317811

1.618033989

2.61803399

 

Apparently soÉ. The ratio here is tending towards 2.618033989 which is the Golden Ratio +1. I donÕt have a fancy store about this finding; IÕm sure itÕs not a revelation to anyone but you and me and 1700 years from now, it will not be called AdcockÕs sequence.

 

LetÕs see what else we can find. What if we start our sequence with 1,3?

Lucas Sequence

 

 

 

 

1

 

 

3

3

 

4

1.333333333

4

7

1.75

2.33333333

11

1.571428571

2.75

18

1.636363636

2.57142857

29

1.611111111

2.63636364

47

1.620689655

2.61111111

76

1.617021277

2.62068966

123

1.618421053

2.61702128

199

1.617886179

2.61842105

322

1.618090452

2.61788618

521

1.618012422

2.61809045

843

1.618042226

2.61801242

1364

1.618030842

2.61804223

2207

1.618035191

2.61803084

3571

1.61803353

2.61803519

5778

1.618034164

2.61803353

9349

1.618033922

2.61803416

15127

1.618034014

2.61803392

24476

1.618033979

2.61803401

39603

1.618033992

2.61803398

64079

1.618033987

2.61803399

103682

1.618033989

2.61803399

167761

1.618033989

2.61803399

271443

1.618033989

2.61803399

439204

1.618033989

2.61803399

710647

1.618033989

2.61803399

 

We see the same results of the Golden Ratio and the Golden Ratio +1. This is actually called the Lucas sequence. (I looked up Mr. Lucas and although I found some information on his sequence, I never discovered his identity.)

 

HereÕs something else that Mr. Lucas identifiedÉ

Lucas Sequence

 

 

 

 

 

2

 

 

4

2

 

14

3.5

7

52

3.71428571

13

194

3.73076923

13.8571429

724

3.73195876

13.9230769

2702

3.7320442

13.9278351

10084

3.73205033

13.9281768

37634

3.73205077

13.9282013

140452

3.73205081

13.9282031

524174

3.73205081

13.9282032

1956244

3.73205081

13.9282032

7300802

3.73205081

13.9282032

27246964

3.73205081

13.9282032

101687054

3.73205081

13.9282032

379501252

3.73205081

13.9282032

1416317954

3.73205081

13.9282032

5285770564

3.73205081

13.9282032

19726764302

3.73205081

13.9282032

73621286644

3.73205081

13.9282032

2.74758E+11

3.73205081

13.9282032

1.02541E+12

3.73205081

13.9282032

3.82689E+12

3.73205081

13.9282032

1.42822E+13

3.73205081

13.9282032

5.33017E+13

3.73205081

13.9282032

1.98925E+14

3.73205081

13.9282032

7.42397E+14

3.73205081

13.9282032

2.77066E+15

3.73205081

13.9282032

Column 1 is based on the beginning numbers 2,4 and each subsequent number is the sum of (4 times the previous number) minus (the number previous to that). In short, A4= 4*A3-A2.

 

The above result leads me to believe there may be a Golden Something quality to 3.73205081 and 13.9282032 but I donÕt know what it is. LetÕs see what happens if we divide the third column by the second column.

 

Lucas Sequence

 

 

 

 

 

 

 

2

 

 

 

4

2

 

 

14

3.5

7

2

52

3.71428571

13

3.5

194

3.73076923

13.8571429

3.71428571

724

3.73195876

13.9230769

3.73076923

2702

3.7320442

13.9278351

3.73195876

10084

3.73205033

13.9281768

3.7320442

37634

3.73205077

13.9282013

3.73205033

140452

3.73205081

13.9282031

3.73205077

524174

3.73205081

13.9282032

3.73205081

1956244

3.73205081

13.9282032

3.73205081

7300802

3.73205081

13.9282032

3.73205081

27246964

3.73205081

13.9282032

3.73205081

101687054

3.73205081

13.9282032

3.73205081

379501252

3.73205081

13.9282032

3.73205081

1416317954

3.73205081

13.9282032

3.73205081

5285770564

3.73205081

13.9282032

3.73205081

19726764302

3.73205081

13.9282032

3.73205081

73621286644

3.73205081

13.9282032

3.73205081

2.74758E+11

3.73205081

13.9282032

3.73205081

1.02541E+12

3.73205081

13.9282032

3.73205081

3.82689E+12

3.73205081

13.9282032

3.73205081

1.42822E+13

3.73205081

13.9282032

3.73205081

5.33017E+13

3.73205081

13.9282032

3.73205081

1.98925E+14

3.73205081

13.9282032

3.73205081

7.42397E+14

3.73205081

13.9282032

3.73205081

2.77066E+15

3.73205081

13.9282032

3.73205081

 

What we have discovered is that 13.9282032 (ratio of every other number in sequence) is the square of 3.73205081 (ratio of sequential numbers in the sequence).

 

 

LetÕs see what happens if we divide an element in the sequence by one 3 rows previous instead É

 

Lucas Sequence

 

 

 

 

 

 

 

 

 

2

 

 

 

 

4

2

 

 

 

14

3.5

7

 

 

52

3.71428571

13

26

 

194

3.73076923

13.8571429

48.5

13

724

3.73195876

13.9230769

51.7142857

13.8571429

2702

3.7320442

13.9278351

51.9615385

13.9230769

10084

3.73205033

13.9281768

51.9793814

13.9278351

37634

3.73205077

13.9282013

51.980663

13.9281768

140452

3.73205081

13.9282031

51.980755

13.9282013

524174

3.73205081

13.9282032

51.9807616

13.9282031

1956244

3.73205081

13.9282032

51.9807621

13.9282032

7300802

3.73205081

13.9282032

51.9807621

13.9282032

27246964

3.73205081

13.9282032

51.9807621

13.9282032

101687054

3.73205081

13.9282032

51.9807621

13.9282032

379501252

3.73205081

13.9282032

51.9807621

13.9282032

1416317954

3.73205081

13.9282032

51.9807621

13.9282032

5285770564

3.73205081

13.9282032

51.9807621

13.9282032

19726764302

3.73205081

13.9282032

51.9807621

13.9282032

73621286644

3.73205081

13.9282032

51.9807621

13.9282032

2.74758E+11

3.73205081

13.9282032

51.9807621

13.9282032

1.02541E+12

3.73205081

13.9282032

51.9807621

13.9282032

3.82689E+12

3.73205081

13.9282032

51.9807621

13.9282032

1.42822E+13

3.73205081

13.9282032

51.9807621

13.9282032

5.33017E+13

3.73205081

13.9282032

51.9807621

13.9282032

1.98925E+14

3.73205081

13.9282032

51.9807621

13.9282032

7.42397E+14

3.73205081

13.9282032

51.9807621

13.9282032

2.77066E+15

3.73205081

13.9282032

51.9807621

13.9282032

 

Now we have entries approaching 51.9807621É.

 

In this exercise, weÕve looked at sequences of numbers, some famous and some not, that were defined by mathematicians centuries ago, when all the calculations were manual. Think of trying to produce with pencil and paper the numbers we have listed here. By spreadsheet, they were produced in a matter of minutes and the formulas used were simple addition, multiplication and division.

 

 

Return