

Mathematics Education Program J. Wilson, EMAT 6690

The Circle of Apollonius

By

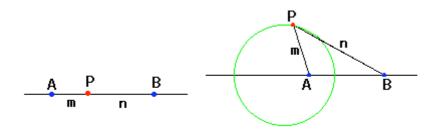
BJ Kim

Who is Apollonius? (History of mathematician)

Apollonius of Perga (about 262 B.C- about 190 B.C.) was a Greek mathematician known as 'The Great Geometer'. His works had a very great influence on the development of mathematics and his famous book Conics introduced the terms parabola, ellipse and hyperbola. http://www.britannica.com/EBchecked/topic/30058/Apollonius-of-Perga

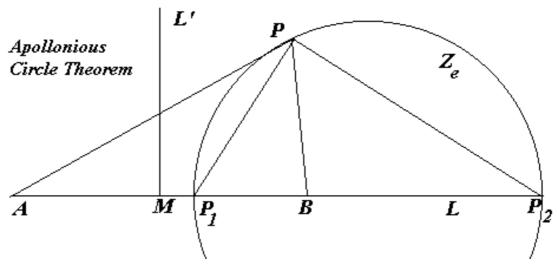
What is the Circle of Apollonius?

The locus of a point P whose distance from a fixed point A is a multiple of its distance from another fixed point B. If the multiple is equal to 1, then the locus is a line-- the perpendicular bisector of the segment AB. If the multiple is not equal to 1, then it is a circle. The locus is called the Circle of Apollonius.



In the diagram, AP:BP = m:n. When the point P moves keeping this ratio the locus of P is a circle. We call it the circle of Apollonius.

This circle connects interior and exterior division points of A and B.



The locus of a variable point whose distances from two fixed points are at a constant ratio k, is a circle for $k \neq 1$ and the perpendicular bisector of the two points for k = 1. The family of such loci for all real values of e forms a coaxial family of circles with the two fixed points as limit circles.

Proof

Let L be the line through the two fixed points A, B.

Let P be a variable point such that PA/PB = k is a constant. WLOG [without loss of generality] assume k > 1. Let P1 and P2 be two points on L, P1 between A and B, and P2 outside, such that PiA/PiB = k for i = 1, 2.

Then since PA/PB = P1A/P1B = area (ΔPAP1) / area (ΔPAP2), P1 is equidistant from PA and PB, so that PP1 bisects <APB internally. Similarly, P2 is equidistant from lines PA and PB, hence PP2 bisects <APB externally. ∴PP1 \(^{\pm}\) PP2. The internal and external bisectors of at an angle of a triangle are perpendicular. The sum of the internal angle and the external angle is 180 degrees. The angle between the internal and external bisectors is the sum of one-half of each. Therefore the angle measures 90 degrees. ∴P lies on the circle Ze on P1P2 as diameter.

Let M be the midpoint of AB. \therefore MP1/MB = (½) (AP1-BP1) / (½) (AP1 + BP1) = (k-1)/(k+1) = (½) (AP2-BP2) / (½) (AP2 + BP2) = MB/MP2.

 \therefore MB2 = MP1 \times MP2. \therefore The tangent from M to Ze has length MB, or AB/2, which is independent of k. So for each real value of k, the different circles Ze all have L as diameter

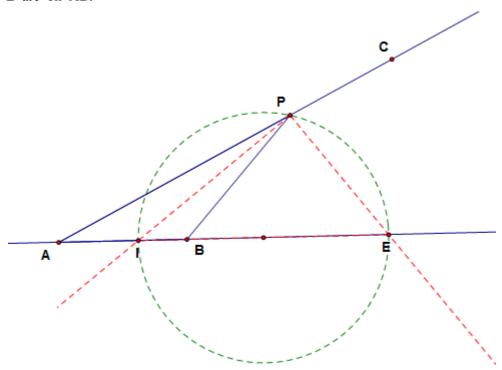
and have tangents from M having AB/2 as length, thus forming a radical family of circles with the perpendicular bisector L' of AB as radical axis. The points A and B corresponds to the cases when k=0 and ∞ and are null circles. For k=1, the locus is the perpendicular bisector L' of AB.

The proof of this result is based on the following theorems:

- (i) The angle bisectors of a triangle
- (ii) The proportion resulting from a line drawn parallel to a side of a triangle. In fact, the proof connects these theorems in a nice way, and provides are refreshing idea about circles. The students can use Circle of Apollonius to tackle interesting, sometimes challenging, problems.

Let A and B be two fixed points, and let P be a point where PA: PB = k, a positive constant not equal to one. Next, bisect the angle APB internally and externally by PI and PE respectively, where I and

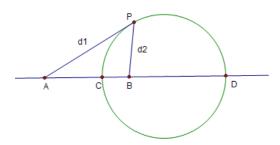
E are on AB.



Since PI bisects <APB and PE bisects its supplementary angle BPC, then by the bisector angle theorem, I and E divide AB internally and externally in the ratio k. Hence I and E are fixed points. Since m<IPE = 90°, the locus of P is a circle with IE being a diameter,

Conclusion: Apollonius's Alternative Definition of a circle

A circle is usually defined as the set of points P at a given distance r (the circle's radius) from a given point (the circle's center). However, there are other, equivalent definitions of a circle. Apollonius discovered that a circle could also be defined as the set of points P that have a given ratio of distances k = d1/d2 to two given points (labeled A and B in below Figure). These two points are sometimes called the foci.



Apollonian Circles Theorem¹

The locus is a circle, unless of course r = 1, in which case it's the perpendicular bisector of AB. The proof exploits the properties of angle bisectors: internal and external. Construct points C and D on the line AB such that AC/BC = AD/BD= r. For $r \neq 1$, C and D always exist. Note that both C and D lie on the sought locus.

The circle at hand has CD as a diameter. Indeed, C serves as the feet of the internal bisector of triangle APB at apex P, PD serves as the external bisector. Therefore, PC \perp PD. Chords PC and PD are perpendicular and therefore define a 90° inscribed angle. The angle subtends a 180° arc, which means that CD is a diameter of the circle.

For any P on the circle, the internal and external bisectors of angle APB pass through (the fixed points) C and D. Since, for the same A and B, each of the Apollonian circles corresponds to a different r, no two Apollonian circles intersect. For 0 < r < 1, the circles are closer to A and surround it. For smaller values of r, they are increasingly close to A. For r > 1, the circles surround B and, as r grows become

¹ Retrieved on http://www.cut-the-knot.org/Curriculum/Geometry/LocusCircle.shtml#solution

increasingly close to it. For this reason, points A and B are often considered as circles, now *point circles*, circles of radius 0.

http://www.10ticks.co.uk/ies/vector/applets/apolon/apolon.html

Reference

Ulrich, J., & Payne, J. (1972). Geometry. Harcourt Brace Jovanovich, Inc.

Silvester, J. (2001). Geometry Ancient & Modern. Oxford: Oxford University Press.

Axler, S., & Gehring, F. W., & Ribet, K. A.(Ed.). (2000). Geometry: Euclid and Beyond. Springer.

Heath, T. L. (1921). A History of Greek Mathematics (2 vols.).Oxford.