Richard Francisco

The Number of Assignments for this Course is Growing Like Families of Rabbits!

 


The table at the bottom of this page contains values of the Fibonacci (1st column) and Lucas (3rd column) sequences. The Fibonacci sequence is a sequence where the first two values are equal to one, and each successive term is defined recursively, namely the sum of the two previous terms. The Lucas sequence is similar, though the first term is one and the second term is three, but defined equivalently with the Fibonacci sequence thereafter.

The entries in the second and fourth columns are the ratios of the two preceding terms in the respective sequence. These entries appear to approach the same number, which would be the limit of the ratio of the terms. I will prove that there is such a limit, and give the value of this number.

 

To consider the limit of the Fibonacci sequence, let

by the properties of limits,

It will be helpful to explicitly state the construction of the Fibonacci sequence to manipulate the above expressions:

Using this equation to substitute, we get

and so we get the equivalent equations

and finally solving for L using the quadratic formula yields:

which is the limit of the ratio of the terms, and is approximately 1.618034

 

As a fun fact, the explicit formula of the Fibonacci sequence is:

 

This table confirms the above calculations.

 

1 1 1 1
1 1 3 3
2 2 4 1.33333333333333
3 1.5 7 1.75
5 1.66666666666667 11 1.57142857142857
8 1.6 18 1.63636363636364
13 1.625 29 1.61111111111111
21 1.61538461538462 47 1.62068965517241
34 1.61904761904762 76 1.61702127659574
55 1.61764705882353 123 1.61842105263158
89 1.61818181818182 199 1.61788617886179
144 1.61797752808989 322 1.61809045226131
233 1.61805555555556 521 1.61801242236025
377 1.61802575107296 843 1.61804222648752
610 1.61803713527851 1364 1.61803084223013
987 1.61803278688525 2207 1.61803519061584
1597 1.61803444782168 3571 1.6180335296783
2584 1.61803381340013 5778 1.61803416409969
4181 1.61803405572755 9349 1.61803392177224
6765 1.61803396316671 15127 1.61803401433308
10946 1.6180339985218 24476 1.61803397897799
17711 1.61803398501736 39603 1.61803399248243
28657 1.6180339901756 64079 1.61803398732419
46368 1.61803398820532 103682 1.61803398929446
75025 1.6180339889579 167761 1.61803398854189
121393 1.61803398867044 271443 1.61803398882935
196418 1.61803398878024 439204 1.61803398871955
317811 1.6180339887383 710647 1.61803398876149
514229 1.61803398875432 1149851 1.61803398874547
832040 1.6180339887482 1860498 1.61803398875159
1346269 1.61803398875054 3010349 1.61803398874925
2178309 1.61803398874965 4870847 1.61803398875014
3524578 1.61803398874999 7881196 1.6180339887498
5702887 1.61803398874986 12752043 1.61803398874993
9227465 1.61803398874991 20633239 1.61803398874988
14930352 1.61803398874989 33385282 1.6180339887499
24157817 1.6180339887499 54018521 1.61803398874989
39088169 1.61803398874989 87403803 1.6180339887499
63245986 1.6180339887499 141422324 1.61803398874989
102334155 1.61803398874989 228826127 1.61803398874989


Return