Freshmen Algebra ÒMistakesÓ?

 

History behind this problem: In our Abstract Algebra class, a problem was posed concerning what (x+1)4 would look like in Zn[x]. In context, we were discussing situations for which (a+b)n might equal an + bn. Of course, if we are working with coefficients over the real numbers, these expressions are equivalent only in very special cases (such as when a=b=0 – boring!). So we decided to look at a few rings (or fields) for which such expressions might indeed be equivalent for all values in the ring (or field).

 

We have seen what happens to a polynomial when we are working in the field of real numbers. However, what happens when we work under a more ÒspecializedÓ type of ring or field of coefficients? Or, put another way, how does the binomial theorem look different when polynomials are reduced mod (n), for some natural number n?

 

For this discussion, let the notation R[x] denote the set of all polynomials with real number coefficients, Q[x] with rational coefficients, Z[x] with integer coefficients, and Zn[x] with coefficients in Z mod (n).

 

 

 

Z2 = {0, 1}

Z3 = {0, 1, 2}

Z5 = {0, 1, 2, 3, 4}

Z7 = {0, 1, 2, 3, 4, 5, 6}

Z11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

 

 

First example:  f(x) = (x+1)2 = x2 + 2x +1 in R[x]

 

Expansion in Z2[x]:  f(x) = (x+1)2 = x2 + 2x + 1 = x2 + 1. The moral of this story is the following: when high school algebra students make this Òmistake,Ó clearly they must have been working in Zp[x]!

 

 

 

LetÕs first look at various representations of PascalÕs Triangle for different Zn.

First, for Z we have (noted later as ÒZ-triangleÓ):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

3

 

3

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

4

 

6

 

4

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

5

 

10

 

10

 

5

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

6

 

15

 

20

 

15

 

6

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

7

 

21

 

35

 

35

 

21

 

7

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

8

 

28

 

56

 

70

 

56

 

28

 

8

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

9

 

36

 

84

 

126

 

126

 

84

 

36

 

9

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

10

 

45

 

120

 

210

 

252

 

210

 

120

 

45

 

10

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

11

 

55

 

165

 

330

 

462

 

462

 

330

 

165

 

55

 

11

 

1

 

 

 

 

 

 

 

 

 

1

 

12

 

66

 

220

 

495

 

792

 

924

 

792

 

495

 

220

 

66

 

12

 

1

 

 

 

 

 

 

 

1

 

13

 

78

 

286

 

715

 

1287

 

1716

 

1716

 

1287

 

715

 

286

 

78

 

13

 

1

 

 

 

 

 

1

 

14

 

91

 

364

 

1001

 

2002

 

3003

 

3432

 

3003

 

2002

 

1001

 

364

 

91

 

14

 

1

 

 

 

1

 

15

 

105

 

455

 

1365

 

3003

 

5005

 

6435

 

6435

 

5005

 

3003

 

1365

 

455

 

105

 

15

 

1

 

1

 

16

 

120

 

560

 

1820

 

4368

 

8008

 

11440

 

12870

 

11440

 

8008

 

4368

 

1820

 

560

 

120

 

16

 

1

 

 

 

For Z2:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

0

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

0

 

0

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

1

 

0

 

1

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

 

1

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

1

 

1

 

0

 

0

 

0

 

0

 

1

 

1

 

1

 

1

 

 

 

 

 

 

 

 

 

1

 

0

 

0

 

0

 

1

 

0

 

0

 

0

 

1

 

0

 

0

 

0

 

1

 

 

 

 

 

 

 

1

 

1

 

0

 

0

 

1

 

1

 

0

 

0

 

1

 

1

 

0

 

0

 

1

 

1

 

 

 

 

 

1

 

0

 

1

 

0

 

1

 

0

 

1

 

0

 

1

 

0

 

1

 

0

 

1

 

0

 

1

 

 

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

I have color-coded the 1Õs in red and 0Õs in gold to help us see better. One thing this immediately shows us is the odd and even numbers for each row of the PascalÕs Triangle in Z. Note that rows 1, 3, 7, and 15 of the Z-triangle have no even numbers in them.  Can you predict the next row of the triangle that will contain all odd numbers? 

 

 

 

 

For the Z3 triangle, I was surprised at what I observed.

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

0

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

1

 

1

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

0

 

2

 

0

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

0

 

2

 

2

 

0

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

1

 

2

 

1

 

2

 

1

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

1

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

1

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

1

 

2

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

2

 

1

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

1

 

0

 

0

 

1

 

0

 

0

 

0

 

0

 

0

 

1

 

0

 

0

 

1

 

 

 

 

 

 

 

 

13

 

 

 

 

 

 

1

 

1

 

0

 

1

 

1

 

0

 

0

 

0

 

0

 

1

 

1

 

0

 

1

 

1

 

 

 

 

 

 

 

14

 

 

 

 

 

1

 

2

 

1

 

1

 

2

 

1

 

0

 

0

 

0

 

1

 

2

 

1

 

1

 

2

 

1

 

 

 

 

 

 

15

 

 

 

 

1

 

0

 

0

 

2

 

0

 

0

 

1

 

0

 

0

 

1

 

0

 

0

 

2

 

0

 

0

 

1

 

 

 

 

 

16

 

 

 

1

 

1

 

0

 

2

 

2

 

0

 

1

 

1

 

0

 

1

 

1

 

0

 

2

 

2

 

0

 

1

 

1

 

 

 

 

 

 

 

1

 

2

 

1

 

2

 

1

 

2

 

1

 

2

 

1

 

1

 

2

 

1

 

2

 

1

 

2

 

1

 

2

 

1

 

 

 

 

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

2

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

 

 

1

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

2

 

2

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

1

 

1

 

2

 

1

 

0

 

0

 

0

 

0

 

0

 

0

 

2

 

1

 

2

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

2

 

1

 

 

 

Observe the parts colored in gray. It appears that this triangle is repeating itself both on the left and on the right.  Rows 3 and 9 of this triangle contain coefficients that are all divisible by 3 (except for the first and last coefficients of the polynomial).

 

 

LetÕs take a look at another binomial expansion. Let f(x) = (x+y)4 .

 

 

Z2[x]:  f(x) = (x+y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 = x4+ y4 .

 

Z3[x]:  f(x) = (x+y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 = x4 + x3y + xy3 + y4

(note the squared term ran away because Z3 hurt its feelings by reducing the 6 coefficient to 0).

 

Furthermore, note that this expression factors into f(x) = (x3 + y3) (x + y) = (x + y)(x2 – xy + y2) (x + y) = (x + y)2 (x2 – xy + y2),

and since -1 = 2 in Z3, we may finally write f(x) = (x + y)2 (x2 + 2xy + y2). However, the second factor now has the form of a perfect square trinomial, so we may factor that one down even further to obtain: f(x) = (x + y)2 (x + y)2 .

 

In summary, there are multiple factorizations for f(x) in this case.  I will write them all at once:

 

f(x) = (x+y)4 = (x3 + y3) (x + y) = (x + y) (x + y)  (x2 – xy + y2) = (x + y)2 (x2 – xy + y2) = (x + y)2 (x + y)2 .

 

 

Z4[x]:  f(x) = (x+y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 = x4 + 2x2y2 + y4 = (x2 + y2)2 --- how strange!

 

Z6[x]:  f(x) = (x+y)4 = x4 + 4x3y +  4xy3 + y4 = x4 + 4x3y + 4xy3 + y4

 

So, this begs a question: ÒWhich other rows of PascalÕs Triangle will (in Zn) will have coefficients (other than the first and last) that are zero?Ó  Is this true for all Zn or just special cases?  (IÕm suspicious that this may be the case for all Zp where p is prime.)

 

This is in fact what weÕre saying in this case.  Assume that p is prime and q = pn, where n is a natural number. Then .  (*)

 

This gets to the essence of our ÒFreshman Mistake.Ó WeÕve seen the common ÒerrorÓ (among the Reals) whereby new and unsuspecting algebra students claim (x + y)n = xn + yn.  I am certainly not advocating that we teach our high school students how to do binomial expansions among other domains (nor am I necessarily saying we should not do so). However, I think it is helpful for mathematics educators to know of situations for which this ÒcalculationÓ is actually correct. There are indeed worlds for which this calculation is correct.  In essence, for any Zp, we find that for all p = qx (for all natural numbers, x), this calculation is no longer Òin error.Ó

 

Proof for (*):

 

Conclusion:

 

Our students may make this mistake even if they arenÕt first year students (even in college). Even though we cringe when we see these kinds of mistakes, it may be helpful for teachers to know when certain ÒmistakesÓ are actually not mistakes, but valid mathematics. Hopefully this investigation essay will help to illustrate this important issue.

 

Questions? Comments? Email me.