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Abstract. Thirty-four matched pairs of sixth- and
seventh-grade students were selected from 358
participants in a comparison of an explicit concrete-
to-representational-to-abstract (CRA) sequence of
instruction with traditional instruction for teaching
algebraic transformation equations. Each pair of
students had been previously labeled with a spe-
cific learning disability or as at risk for difficulties
in algebra. Students were matched according to
achievement score, age, pretest score, and class
performance. The same math teacher taught both
members of each matched pair, but in different classes.
All students were taught in inclusive settings under the
instruction of a middle school mathematics teacher.
Results indicated that students who learned how to
solve algebra transformation equations through CRA
outperformed peers receiving traditional instruction on
both postinstruction and follow-up tests. Additionally,
error pattern analysis indicated that students who
used the CRA sequence of instruction performed fewer
procedural errors when solving for variables.

Abstract thinking requires a person to work with infor-
mation that is not readily represented at the concrete
or pictorial level (Hawker & Cowley, 1997). To work
with abstract information is to understand theoretical
properties and think beyond what a person can touch or
see. On a practical level, an ability to work with abstract
concepts allows one to work with predictions of what
may happen and expectations about what is happening
elsewhere. Abstract knowledge may also be considered
a conscious awareness that a symbol stands for some
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number of things. That symbol represents things known
and even unknown. In an abstract algebraic equation,
mathematical parts can be manipulated and adjusted,
and thus equations change upon each manipulation. In
mathematics, abstract symbols are used for numbers
(e.g., 5), sets of numbers ({X:1,2,3}), and properties of
a statement or solution (X = 2Y + 5).

Algebra is considered a gateway to abstract thought.
The need for students to successfully complete alge-
bra has been become increasingly apparent over the last
decade. Several states now require students to pass end-
of-year or graduation tests that show knowledge in alge-
braic understanding (Ysseldyke et al., 1998). Although
the intention of improving math standards appears justi-
fied, end-of-year exams have not helped students grad-
uate. Now that states require all students to adhere to
the same graduation standards, introducing high-stakes
assessments is a great concern for students with dis-
abilities. With historically poor graduation rates and
low overall success rates in secondary school, increased
graduation requirements have lessened the opportuni-
ties for students with poor performance and students
with disabilities to graduate.

Due to its abstract nature, educators have struggled
to help students comprehend initial algebra instruction.
Devlin (2000) stated that for students to understand ab-
stract concepts more easily, it is important for them to
learn precursor concepts in a concrete manner first. One
way to simplify students’ understanding of abstract con-
cepts is to transform such complex concepts into con-
crete manipulations and pictorial representations. Such
suggestions, while they appear logical, go against the
very definition of abstract. Often, when educators at-
tempt to break down abstract mathematics into concrete
and representational steps, they may alter the concept by
eliminating parts of equations, thus making generalized
learning inappropriate, if not impossible.

To improve the opportunities for success in alge-
bra and possibly improve graduation rates, teachers
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and researchers need to develop means for teaching
secondary math concepts to more students (Witzel,
Smith, & Brownell, 2001). One approach that shows
promise of making algebra instruction more accessi-
ble to students with difficulties involves the use of
concrete materials that develop into representational
and eventually abstract thought. Such instruction is
known as the concrete-to-representational-to-abstract
sequence of instruction (CRA). CRA instruction starts
with a student using manipulative objects to display
and solve math problems. Once students understand a
topic concretely, they work with the same concept us-
ing pictorial representations. Representational knowl-
edge is a very practical step for students unwilling to
carry objects out of their classroom to solve algebraic
problems.

Although much research on CRA has focused on
the effectiveness with arithmetic instruction (Miller &
Mercer, 1993), recently more researchers have at-
tempted to design CRA models for algebra instruction
(Borensen, 1997; Maccini & Hughes, 2000). The dif-
ficulty of creating an effective CRA model in algebra
revolves around the core issue of abstractness. Building
a representation of an algebra expression or equation in
a way that maintains the abstract nature of the concept
has been difficult for educators.

The algebraic representations developed by Maccini
and Hughes (2000) and Borenson (1997) interfere with
algebraic learning. In the concrete and representational
steps used in these approaches, the materials did not ad-
equately represent algebraic variables and coefficients.
For example, equations such as X + 3 = 5 and 5X =
15 appear easily represented in these models, but the
representations used by these authors in both instances
did not differentiate coefficients from exponents. This
may lead to possible future confusion. Specifically, by
asking students to represent the variable X with a cube,
the coefficient is misrepresented. Instead of thinking
five cubes is 5X, mathematically, five cubes should be
X5 when working with exponents. In a practical sense,
when the student who learned that five yellow cubes rep-
resents the abstract concept of 5X, how is the student
going to represent X5 or even X2? By creating incor-
rect models for representational and concrete stages, it
is likely that students will perform well at simple in-
verse operations and reducing expression, but they will
be at a disadvantage when confronted with more com-
plex equations beyond the immediate lesson. Thus, the
models used by Maccini and Hughes and Borenson may
help build confidence for solving “algebra”; however,
the failure of their manipulative objects to generalize
to more difficult algebraic concepts represents a weak-
ness in current CRA models, and thus in their long-term
effectiveness for students.

The purpose of this research was to test the effec-
tiveness of a new explicit CRA algebra model that was
designed to represent more complex equations. The dif-
ference between this model and other hands-on alge-
bra curricula is that this model displays the conceptual

components in its concrete and pictorial representations
in a manner that prepares the student to succeed in more
advanced algebra concepts. Although other programs
were effective as short-term interventions, this model
provides representational processes and procedures that
are appropriate for both beginning and advanced algebra
topics by allowing students to work with every algebra
component within an equation.

Effectiveness of the CRA model for students with
learning disabilities and students who were at risk for
failure in secondary mathematics was evaluated accord-
ing to a posttest and a three-week follow-up measure.
The scores of the students who were taught using CRA
instruction were compared to scores of matched peers
taught using abstract forms of instruction. To reduce
error and increase power, students with an at-risk con-
cern for difficulties in algebra or a disability label were
matched according to grade level and teacher, standard-
ized math achievement score, pretest score, class per-
formance as rated by the teacher, and age.

METHODOLOGY

Study Participants

Teachers

Twelve classrooms and 10 teachers in a southeastern
United States urban county participated in this research.
Four teachers individually taught a total of eight math-
ematics classes for sixth graders, and two sets of teach-
ers team-taught four mathematics classes for seventh
graders. Every class included students with and with-
out disabilities. One sixth-grade teacher was certified
to teach students with learning disabilities, and one
other sixth-grade teacher had taken courses on students
with learning disabilities. Both seventh-grade team-
taught classes contained a math teacher and one teacher
certified in teaching students with high-incidence dis-
abilities. In these team-taught classes, the regular edu-
cation math teacher took the lead in planning and im-
plementing lessons. The special educators monitored
student behavior and worked to keep students on-task.
The six sets of teachers were trained individually by the
senior author in a one-day session with several follow-
up meetings. Additional training was provided through
demonstrations and guided practice until the teachers
reported that they felt capable of delivering the instruc-
tional model.

Students

Approximately 358 sixth- and seventh-grade students
participated in the instruction. Of these students,
34 students with disabilities or at risk for algebra
difficulty in the treatment group were matched with
34 students with similar characteristics across the same
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TABLE 1
Study Participants by Teacher

Students Using Students Using Number of
Grade Level Abstract Method CRA Model Matched Pairs

Teacher 1 7 53 64 13
Teacher 2 7 32 27 8
Teacher 3 6 24 21 6
Teacher 4 6 26 21 2
Teacher 5 6 30 18 2
Teacher 6 6 23 17 3

teacher’s classes in the comparison group. Table 1 con-
tains descriptive information about these students. All
students were included in the general education class-
room for sixth- or seventh-grade math. The at-risk cat-
egory was developed by the researchers because many
students who are not labeled as having a learning dis-
ability do not fare well academically, especially in more
abstract topics such as algebra. To qualify as at risk for
algebra difficulties, the student had to meet the follow-
ing criteria: (1) performed below average in the class-
room according to the teacher, (2) scored below the 50th
percentile in mathematics in their most recent statewide
achievement test, and (3) was from a low socioeconomic
status (SES) background, as indicated through district
data regarding students who received free or reduced-
price lunch. Since arithmetic achievement alone is not
a guarantee for algebra success, teacher input was inte-
gral to identifying students who showed signs of dif-
ficulty with abstract math such as algebra. The stu-
dent’s SES was considered relevant since low SES
has been shown to be an effective predictor of low
academic achievement (Hobbs, 1990), specifically in
math (Albedi & Lord, 2000; Jimerson, Egeland, & Teo,
1999).

Students identified as having a learning disability
were identified through school services as those who
needed additional support and who evidenced a 1.5
standard deviation discrepancy between ability and
achievement. The students with learning disabilities
who participated in the present study had math goals
listed in their individualized education plans. Those
students with learning disabilities who had only read-
ing disabilities or other disabilities were excluded from
the learning disabilities group for the purpose of this
study.

Matching

The 34 pairs of students were matched according to pre-
vious math course, a statewide achievement test math
score within one stanine, age within one year, grade
level, at-risk or disability label, pretest accuracy within
one item, and teacher. Also, teachers helped develop
student matches by discussing who was performing

at an equivalent level in class. Table 2 contains a
summary of the characteristics of the matched pairs.
Matching increased the power of the study by reducing
the error in results due to previous learning, age, grade,
disability label, teacher-rated class performance, and
pretest. Each teacher who participated in the implemen-
tation of the study taught two equivalent algebra classes.
In the first class, the CRA model was implemented;
in the second class repeated abstract instruction was
implemented.

To account for differences between teachers, students
were matched across teachers. To determine the effects
of different instruction on different students, students
were also matched across type of instruction. Because
participants were matched in pairs, some students had
to be eliminated from the data analyses. Subjects were
eliminated if they missed a lesson and were unable to
make up the lesson, if they missed an assessment and
were unable to make up the assessment, if they moved
to a different class, or if parents or the student did not
sign the permission forms. Several students had to be
eliminated from the data analysis because they had no
county documentation regarding their achievement sta-
nine score, disability label, or economic status. In such
cases both matched students’ data were eliminated.

Assessment Tools

The lead researcher developed a test instrument to mea-
sure the acquisition and maintenance of knowledge
on single-variable equations and solving for a single
variable in multiple-variable equations. From the cur-
riculum material, the researchers developed a pool of
70 questions designed to assess the final step of the
sequence of lessons taught (i.e., transformation equa-
tions). The pool of questions was then distributed to four
algebra teachers for expert review. Reviewers accepted
the question, rejected the question, or provided improve-
ments for each question. The revised 63-item pool of
questions was then distributed to 32 students who had
successfully completed their first year of pre-algebra.
After completion of the pool of items in an untimed as-
sessment, each answer was recorded as correct (1) or in-
correct (0). The percent correct from all the students on
each individual item marked the difficulty of the item.
The 27 items that had a medium difficulty level between
0.375 and 0.625 correct were selected for the assess-
ment instrument. Because of the length of time between
tests and the expected low pretest scores, a single-test
form was used for pretest, posttest, and follow-up as-
sessment. Sample test items are displayed in Figure 1.
Pretest measures were obtained one week prior to imple-
mentation of the treatment. Posttest measures were ob-
tained upon completion of the last day of the treatment,
and follow-up measures were obtained three weeks af-
ter treatment ended. Students were not instructed on any
of the equations between the posttest and the follow-up
measures.
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TABLE 2
Student Matching Demographics

Age Math Stanine Diagnostic Label

Student Match School Teacher Abstract CRA Grade Abstract CRA Abstract CRA

1 1 1 12 12 7 3 3 sld sld
2 1 1 13 12 7 4 3 sld sld
3 1 1 12 13 7 7 6 sld sld
4 1 1 12 13 7 3 3 sld sld
5 1 1 12 13 7 2 2 sld sld
6 1 1 12 12 7 6 7 sld sld
7 1 1 13 12 7 4 5 sld sld
8 1 1 13 12 7 7 6 sld sld
9 1 1 12 12 7 3 3 sld sld

10 1 1 13 13 7 4 4 at-risk at-risk
11 1 1 13 13 7 4 3 at-risk at-risk
12 1 1 12 12 7 3 3 at-risk at-risk
13 1 1 12 12 7 4 4 at-risk at-risk
14 1 2 13 12 6 7 6 sld sld
15 1 2 11 12 6 6 6 sld sld
16∗ 1 2 12 11 6 6 5 sld at-risk
17 1 2 12 12 6 4 4 at-risk at-risk
18 1 2 11 12 6 4 5 at-risk at-risk
19 1 2 12 11 6 2 3 at-risk at-risk
20 2 3 12 12 6 5 5 at-risk at-risk
21∗ 2 3 12 11 6 4 4 at-risk sld
22 2 4 12 12 6 5 5 at-risk at-risk
23 2 4 11 12 6 4 4 at-risk at-risk
24 3 5 12 12 6 3 4 at-risk at-risk
25∗ 3 5 12 13 6 4 4 sld at-risk
26 3 5 12 11 6 5 5 at-risk at-risk
27 4 6 13 13 7 2 2 sld sld
28 4 6 13 12 7 4 4 sld sld
29 4 6 14 13 7 6 5 sld sld
30 4 6 13 13 7 5 4 sld sld
31 4 6 13 14 7 3 3 sld sld
32 4 6 13 13 7 2 2 sld sld
33 4 6 12 13 7 3 3 sld sld
34 4 6 13 13 7 3 3 sld sld

∗Despite differing diagnostic labels, the teacher reported equal overall performance between the two students in these pairs.

Algebra Construct

The present algebra model is designed to take
students from reducing simple two-statement ex-
pressions to solving more complex equations. The
algebraic concept of transforming equations with
single variables was selected as the final algebra skill
to teach. To have students effectively solve transfor-
mations, a five-step 19-lesson sequence of algebra
equations was used. Skill areas included reducing ex-
pressions, solving inverse operations, solving inverse
operations with negative and divisor variables, per-
forming and solving transformations with multi-
ple variables on one side of the equal sign,
and, finally, performing and solving transforma-
tions with multiple variables on both sides of the
equal sign. This sequence of lessons follows that
of major algebra textbooks by Houghton Mifflin
(Brown, Smith, & Dolciani, 1988), Scott Foresman-

Addison Wesley (Charles, Dossey, Leinwand, See-
ley, & Embse, 1998), and Saxon (Saxon, 1997,
2000). However, for the purpose of the present
study, the total number of lessons was reduced
to 19.

Reducing Expressions

Before a student can solve for unknowns and perform
transformations on equations, the student needs to be
able to effectively reduce expressions. Reducing expres-
sions allows a student to see that unknowns and num-
bers cannot be added or subtracted together while the
unknown exists. Additionally, unlike variables cannot
be added or subtracted. For example, the expression 4X
+ 3B + X can be reduced to 5X + 3B, which is its
most basic form. Both groups received three lessons on
reducing expressions.
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Name: _______________________________ Date: _______________________________

Year in School : ________________________ Present Math Class: ___________________

Teacher’s last name: ____________

Solve for the variable. Circle your answer and write legibly.

2 - 2X = 17 + X 7X – 10 = 2X + 5 -3 + 9X = 5X + 13

6Y – 2 = 18 – 2Y -8X + 7= 22 - 3X  6 – 2X = X - 6

FIGURE 1 Assessment format and item examples.

Inverse Operations

Solving for inverse operations, often called single-
variable equations, involves solving for an unknown
number or set of unknown numbers. To help establish
the concept of a variable, all variables in this unit rep-
resented one specific number. The usefulness of solv-
ing for single unknowns using inverse operations be-
comes apparent when students work with practical math
problems to find a missing quantity. For example, stu-
dents learned how to determine how much money a
child had borrowed when he bought a movie ticket for
$6 and received $4 in change, X − 6 = 4. To isolate
the needed variable in inverse operations, students used
subtraction, addition, multiplication, and division. In
this example of an inverse operation, X = 10. Other
examples of inverse operation questions are: 4Y = 16;
M − 2 = 7; and K − 4 = 9. Both groups received four
lessons on solving inverse operations.

Negative and Divisor Variables

Solving for variables when they appear as negative or as
the denominator of a fraction involves an additional step
when solving inverse operations. Students must first
transform the variable to make a positive sign or to po-
sition the variable in the numerator. For example, when
solving for 6/X = 3, the X first should be multiplied to
each side to produce 6X/X = 3X. After dividing X by
X, the student is left with a simple inverse operation 6 =
3X, which the student has already been instructed how
to solve. An example for negative variables is 18 − W =
8. Both groups received four lessons on solving for neg-
ative and divisor variables.

Transformations on One Side of the Equal Sign

One of the more complex concepts that develops from
solving for a single variable is using the same techniques
with multiple variables. Transforming equations allows
the student to experience the ambiguity and abstract-
ness associated with algebra (i.e., that variables need to
be combined before solving). When multiple variables
are on the same side of the equal sign (i.e., 2X + 6X
= 64), then variables must be combined through addi-
tion or subtraction. Combining one side of an equation
is simply reducing an expression. Once combined, the
student is left with an inverse operation (i.e., 8X = 64).
Both groups received four lessons on solving for sin-
gle variables distributed on the same side of the equal
sign.

Transformations Across the Equal Sign

Transformations become more complex when variables
are on both sides of the equal sign. The usefulness of
such a task becomes more evident in courses of study
such as chemistry, physics, and personal finance, and
students may use this technique to solve logic problems
when they are not given sufficient information to pre-
cisely answer the question. For example, in physics, to
determine the power supplied to an electric motor, peo-
ple may use the equation VI = I2R + EI where V =
voltage, I = current, R = resistance, and E = electrical
energy. By transforming the equation, one can solve for
V, I, R, or E. For example, using the equation 25 − 2N
= 5 + 2N, students must add or subtract variables on
one side of the equation in order to place all variables
on the same side of the equal sign (i.e., 25 − 2N − 25
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− 2N = 5 +2N − 25 − 2N). Once the variables are on
one side (i.e., −4N = −20), students perform the same
steps as they did previously (i.e., −4N

4 = −20
−4 ) to determine

that N = 5. Both groups received four lessons on solv-
ing for single variables distributed on both sides of the
equal sign.

Fidelity

To ensure that the sequence of instruction compo-
nents was used consistently throughout the treatment
and comparison groups, a fidelity checklist was used
during an observation of each teacher four times dur-
ing instruction. The teacher was observed on delivery
of instructional components, use of an advance orga-
nizer, description of activity, and implementing mod-
eling, guided practice, and independent practice. Ev-
ery teacher who participated in the study completed
every required scripted component during the obser-
vations. Each teacher was observed teaching a con-
crete lesson, a representational lesson, and two abstract
lessons.

Research Design

A pre-post-follow-up design with random assignment
of clusters was employed for this study. Students were
clustered by classroom and divided into two groups, a
treatment group and a comparison group. The objective
for both groups was to improve pre-algebra skills. The
teachers taught the comparison groups according to ex-
plicit instruction, following modeling, guided-practice,
and independent-practice strategies. The teachers also
taught the treatment group using explicit instruction
techniques but with the addition of CRA components of
instruction. Since one-to-one matching was used in this
analysis, the instruction was a within-subject factor.

The dependent measure, number of correct answers
out of 27 possible on the algebra assessment, was ana-
lyzed for both instruction groups for pretreatment, post-
treatment, and maintenance. A repeated measures anal-
ysis of variance was used to determine if any significant
differences existed between the instructional groups
on posttreatment and maintenance measures. Because
students were matched on pretest assessment, the
pretreatment scores did not significantly differ. Follow-
up univariate analyses of variance and t-tests were com-
puted for acquisition and maintenance.

Using a coin flip, the lead researcher randomly chose
one of the two math classes for the teacher to teach us-
ing CRA instruction and the other class to be taught
using the abstract-only traditional methods. The stu-
dents who learned through CRA were labeled the treat-
ment group, and the students who learned through re-
peated abstract instruction were called the comparison
group.

Treatment Group

Students in the treatment group worked in the same
classroom setting that they had throughout the year, but
their teacher used the CRA model. Since the students
had minimal prior experiences with algebra, they were
introduced to algebraic thinking through CRA. Each
treatment lesson had four steps: introduce the lesson;
model the new procedure; guide students through pro-
cedures; and begin students working at the independent
level. These four steps were used for instruction at the
concrete, representational, and abstract stages of each
concept. Teachers taught the concrete lessons using ma-
nipulative objects and the representational lessons using
pictures. Figure 2 displays a sample problem layout for
an inverse operation, using concrete, representational,
and abstract steps. Teachers used the same instruction
for each class during the abstract lessons. Students
performed the algebra using the same method as the
teacher.

Comparison Group

The only difference between the comparison group
and the treatment group was that the comparison
group used repeated abstract lessons rather than con-
crete objects and pictorial representations. The four
instructional steps matched those of the treatment
group: introduce the lesson; model the new proce-
dure; guide students through procedures; and begin
students working at the independent level. Since the
students had minimal prior experiences with algebra,
the abstract approach of instruction introduced them
to the abstract thinking associated with algebraic con-
cepts. The teacher instructed each lesson using ex-
amples of abstract equations. For example, each in-
verse operation lesson sheet displayed equations in
Arabic symbols, such as −N + 10 = 3. The teach-
ers covered the same content in both groups, and
they used the same length of class time for each
instruction—50 minutes.

Materials

The materials used in the study were developed to de-
termine the difference in acquisition and maintenance
of algebraic understanding for students with learning
disabilities in math. Students in both the treatment and
the comparison groups received the same assessment
instruments throughout the study. Treatment and com-
parison groups received the same questions and equa-
tions on daily learning sheets to guide them and their
teachers through instruction. The only difference was
that the treatment group used manipulative objects for
concrete instruction.
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A concrete representation of –N + 10 = 3 uses manipulative objects. For this problem the objects

would appear in the order indicated by the drawing below, i.e., a minus sign, one coefficient

marker, an N, a plus symbol, a large stick, an equals line, and three small sticks. It is important to

note that physical objects, not drawings were involved.

To solve a concrete problem, students manipulate objects at each step towards the solution.

A pictorial representation would closely resemble the concrete objects but could be drawn exactly

as it appears here.

- N +

To solve a representational problem, students draw each step towards the solution.

An abstract problem is written using Arabic symbols as displayed in most textbooks and

standardized exams.

 - 1N + 10 = 3

To solve an abstract problem students write each step in Arabic symbols.

N +-

FIGURE 2 Concrete, representational, and abstract examples of an inverse operation.

RESULTS

Repeated measures analysis of variance was performed
on two levels of instruction (CRA vs. abstract) and
three levels of occasions (pretest, posttest, and follow-
up). See Table 3 for a summary of student perfor-
mance on the assessments as a function of condition
and time. Both groups showed significant improve-
ments in answering single-variable algebraic equa-
tions from the pretest to the posttest and from the
pretest to the follow-up. However, the students who par-
ticipated in the CRA instruction outperformed their tra-
ditional abstract instruction peers on both the posttest
and follow-up test.

Instructional Differences

The interaction between test occasion and treatment
condition yielded a significant difference (F(2, 66)

= 13.89, p < 0.01). Calculation of a point biserial
(r2

pb(33)=0.56) showed that 56.27 percent of the variance
of the posttest scores was accounted for by the type
of instruction. Since three follow-up tests were used,

TABLE 3
Mean and Standard Deviations for Each Test Within

Each Instructional Group

Descriptive Statistics

N Maximum M SD

PRETEST CRA 34 2 0.12 0.41
PRETEST Abstract 34 2 0.06 0.34
POST CRA 34 23 7.32 5.48
POST Abstract 34 17 3.06 4.37
FOLLOW CRA 34 22 6.68 6.32
FOLLOW Abstract 34 21 3.71 5.21

Note. Total possible score is 27 for each measure.
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the Bonferroni correction procedure (α = 0.05/3 =
0.017) was used to maintain a 95 percent confidence
level.

Follow-up analyses on group means indicated that the
students who received CRA instruction over the four-
week intervention outperformed matched students who
received traditional instruction during the same time pe-
riod with the same teacher. Although there was no sig-
nificant difference between the pretest scores (t(33) =
0.63, p = 0.27) of the two groups, there were significant
differences at posttest and follow-up. On the posttest,
the group receiving CRA instruction (M = 7.32;
SD = 5.48) outperformed the group who received ab-
stract instruction (M = 3.03; SD = 4.39), t(33) = 6.52,
p < 0.01. The group who received CRA instruction
(M = 6.68; SD = 6.32) also outperformed the abstract
group (M = 3.71; SD = 5.21) on the three-week follow-
up test (t(33) = 3.28, p < 0.01).

Change Over Time

The initial instruction in the treatment and comparison
groups combined showed significant improvement in
students’ ability to solve single-variable multiple-step
algebra equations (F(1, 33) = 31.98, p < 0.01). Post
hoc analysis of variance within each instructional group
showed that the abstract group improved from pretest
to posttest and pretest to follow-up (F(2, 99) = 8.34,
p < 0.01), as did the CRA group (F(2, 99) = 23.10, p <
0.01). The abstract group increased from pretest (M =
0.06; SD = 0.34), to posttest (M = 3.06; SD = 4.37) and
then scored similarly on the follow-up exam (X = 3.71;
SD = 5.21). The CRA group increased from pretest
(M=0.12; SD=0.41) to posttest (M=7.32; SD=5.48)
and scored similarly on the follow-up exam (M = 6.68;
SD = 6.21). Although both groups showed a significant
increase from pretest to posttest and pretest to follow-up
exam, neither group showed any reliable change from
their respective posttest to follow-up exams.

Practical Significance

Although the posttest scores appear low compared to
the overall possible score of 27, the students’ growth
was remarkable. As stated earlier, the assessment in-
struments included only items that were answered cor-
rectly by 37.5–62.5 percent of the group of students
who had completed Algebra 1 with a C or better. This
means that a large number of average- to above-average-
achieving students who passed algebra were unable to
correctly answer all or most questions on this assess-
ment. Also, students practiced each of the five skills
for only three to four lessons, totaling 19 lessons, while
in the typical classroom a teacher might spend a few
weeks on each skill when students show difficulties.
The assessment design anticipated that although stu-
dents learned many parts to solving algebra equations,

a few would be unable to answer posttest and follow-up
questions on transformations. In actuality, 15 students
in the group who received traditional abstract instruc-
tion scored 0 correct on the posttest, while only three
students who received CRA instruction scored 0 on the
posttest. Therefore, students who answered 10 questions
correctly in the present study achieved near the average
of students who had successfully completed an entire
Algebra 1 course. For this reason, it is encouraging that
the students who learned how to process algebra equa-
tions through the CRA model averaged nearly 7 correct
answers out of 27 relatively difficult equations.

Although the reliability of group differences was of
importance to this research, the high variability within
each group was also important. Standard deviations
were fairly high relative to mean scores for the pretest
and posttest. In addition, standard deviations increased
from the posttest to the follow-up test. Although stu-
dents selected for the research had learning disability
or at-risk labels, they were still highly variable in their
performance following instruction. This variability is
evident in Table 4, which displays raw scores on each
assessment for each student.

Error Pattern Analyses

Examining answers on tests and daily lessons not only
allows for inspection of more than right or wrong an-
swers, but also provides some indication of common er-
ror patterns for the two groups. This information helps
us understand why a student might have solved for a
variable incorrectly. Table 5 contains a summary of the
noted error patterns. Although both groups made errors
solving with negative numbers and adding opposites to
both sides, the abstract group made more errors attempt-
ing to combine variables and numerals. Students in the
CRA instructional group may have made fewer com-
putational errors because the materials in the hands-on
and pictorial instruction reinforced arithmetic concepts.

Summary

Both groups of students showed significant learning
from the pretest to the posttest. However, on the posttest
and follow-up exams, the students who participated
in CRA instruction outperformed the students who
participated in traditional abstract instruction. In ad-
dition, inspection of error patterns in the two groups of
students indicated that the types of errors may match
the type of instruction.

DISCUSSION

Teachers need to use concrete and pictorial representa-
tions that are appropriate to the age level and develop-
mental level of the students. Howard, Perry, and Conroy
(1995) noted that many teachers in secondary settings
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TABLE 4
Individual Matching Data Across Teachers

Pretest Scores Posttest Scores Follow-Up Scores

Student Match Abstract CRA Abstract CRA Abstract CRA

1 0 0 2 0 8 0
2 0 2 0 3 7 3
3 0 0 0 4 0 18
4 0 0 5 16 4 14
5 0 0 2 4 8 5
6 0 0 9 5 16 17
7 0 0 7 5 9 5
8 0 2 17 21 21 22
9 0 0 0 5 0 9

10 0 0 0 6 4 6
11 0 0 1 9 1 4
12 0 0 0 5 2 9
13 0 0 1 12 0 10
14 0 0 9 11 3 16
15 2 0 9 11 4 7
16 0 0 14 23 15 21
17 0 0 0 14 1 4
18 0 0 4 9 2 11
19 0 0 0 4 0 2
20 0 0 0 3 2 1
21 0 0 0 4 2 1
22 0 1 1 6 1 3
23 0 0 6 13 9 10
24 0 0 0 0 0 3
25 0 0 2 7 0 2
26 0 0 2 9 0 9
27 0 0 0 2 0 0
28 0 0 5 6 3 5
29 0 0 7 11 4 4
30 0 0 1 7 0 0
31 0 0 0 3 0 0
32 0 0 0 8 0 6
33 0 0 0 0 0 0
34 0 0 0 3 0 0

Note. These scores are based on total correct answers out of a maximum
test score of 27.

do not use manipulative objects with their students.
Some secondary teachers may not trust the usefulness
or efficiency of manipulative objects for higher-level
algebra. For this reason, some popular algebra models

TABLE 5
Error Patterns Common in Incorrect Answers

Frequency of Error

Error Type CRA Group Abstract Group Sample Problem Example of Error

Negative numbers 22 students and 73
errors

18 students and 56
errors

−2y = –14 Students see a negative and place it in the answer
without knowledge of the rules of negatives.

Add opposites to both
sides

17 students and 66
errors

12 students and 37
errors

5x = 2x + 6 Instead of subtracting, the student added 2x to the
left side making the wrong equation 7x = 6.

Adding variables and
numerals together

1 student and 3
errors

9 students and 57
errors

3x − 4 = 8 The student would combine the 3x − 4 to be −1x
thus making the equation −1x = 8.

Note. More students in the CRA instructional group attempted solving the transformation equations. Specifically, students in the CRA group made 652
attempts to answer questions, and 535 of these answers showed their work. Students in the comparison group made 459 attempts to answer questions, and only
348 of these showed their steps to solving the problem.

market more to elementary teachers than secondary ed-
ucators. The present algebra model, however, maintains
the algebraic concept while allowing students to view
equations in a different manner than by abstract alone.
This algebra model shows promise to enable teachers to
teach higher-level concepts in a manner that actively in-
volves students, generalizes to complex equations, and
adapts to individual learning styles.

The power of the CRA sequence of instruction is
also supported by this research. The CRA sequence of
instruction has been beneficial to students with disabili-
ties and academic difficulty in the learning of basic facts
(Harris, Miller, & Mercer, 1995; Mercer & Miller, 1992)
and initial fractions (Jordan, Miller, & Mercer, 1999).
Research even supports the CRA sequence to repre-
sent word problems in simple algebraic inverse opera-
tions (Maccini & Hughes, 2000). However, prior to the
present research study, there has not been a published
examination of a manipulative and pictorial method that
translates into more complex equations beyond simply
solving for single inverse operations. Not only was the
present CRA sequence of instruction model applicable
to equations with coefficients other than one, but also
the students were able to make significant gains from
pretest to posttest in solving algebraic transformations.

Some programs for students have been effective
in one-on-one or small-group instruction (Maccini &
Hughes, 2000), but it is unclear how teachers can use
the program for an entire class. Because the CRA model
in the present study was taught to diverse learners in
mainstream classrooms, the CRA sequence appears to
be effective within whole-class settings characteristic
of inclusion models. Although students with disabili-
ties have not always been academically successful in
mainstreamed settings (Zigmond & Baker, 1995), this
CRA algebra model proved effective for students with
identified disabilities and those at risk for math difficul-
ties in a setting with normally achieving peers.

Limitations and Future Direction

There were some limitations to this study. First, the
assessment instrument used for pretest, posttest, and
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follow-up in this study was designed specifically for
this study and has not been fully evaluated. To measure
the differences between traditional instruction and CRA
instruction, the assessment was designed to be difficult
enough to reduce the chance of ceiling effects while
measuring the end result of students advancing through
all 19 lessons. To develop the appropriate questions, the
assessment included only items that approximately half
of those students who had passed Algebra 1 could an-
swer correctly. The questions on the posttest and follow-
up tests did not cover the spectrum of the five lessons
taught, but rather the final, most difficult step. Although
this increases the power of the statistics, it may cause
confusion if the scores are inspected through simple
percentages. Since most students do not learn the al-
gebraic concepts taught during this project until they
are in ninth grade, the sample of students used to de-
velop the assessment differed from the targeted sample
of students with learning disabilities in the study. Ad-
ditionally, the assessment was not standardized to the
entire district but merely reflected the knowledge of 32
students mixed between public and private school who
had completed Algebra 1 with an A or B grade. Only
eight of the students who participated in the design of
the assessment had been diagnosed with learning dis-
abilities. The same assessment items were used in the
pretest, posttest, and follow-up tests. Although there
may be a concern with history effects, most teachers
claimed that it would be uncharacteristic of their stu-
dents to remember the specific items from one test to
the next.

A second and related limitation relates to the score
of the assessments. Two teachers commented that the
hands-on program resulted in student success that was
not addressed in the assessment provided. One teacher
remarked that the assessment covered only the most dif-
ficult material and not the other four types of equations
and expressions learned. Although the teachers noted
a limitation within the assessment development, their
comments supported the new algebra model for teach-
ing students at the sixth- and seventh-grade levels. There
were clear differences in performance between students
who participated in the CRA model and those who par-
ticipated in traditional instruction, but an encompassing
study of the components with algebra for these age lev-
els needs to be examined.

A third limitation relates to the lesson sequence. As
previously discussed, this study employed the sequence
of lessons found in typical algebra textbooks (i.e.,
Houghton Mifflin (Brown et al., 1988), Scott Foresman-
Addison Wesley (Charles et al., 1998), and Saxon
(Saxon, 1997, 2000)). Much of the low student perfor-
mance for these grade levels may be due to the untested
sequence of lessons listed in different textbooks. Match-
ing reduced the possibility that the curriculum lesson
sequence influenced the comparison of the treatment
and comparison group. However, the curriculum does
influence how well students perform overall.

The nature of the assessment and the sequence
of lessons may have led to a reduction of perceived

student performance on the posttest and follow-up test.
However, these limitations affected each class similarly.
Since the data analyses were compared across matched
subjects with the same teacher, any differences in how
these limitations affected each member of a matched
pair should be negligible. However, some of the sugges-
tions of teachers and students, as well as observations
throughout the project, indicate the need to increase the
number of lessons at the representational and abstract
levels. This information will help educators prepare fu-
ture research on the CRA sequence of instruction and
research on algebra instruction in general.

Conclusion

This research on the effectiveness of CRA sequence
of instruction for algebra learning among students with
math difficulties brings continued insight into the effec-
tiveness of hands-on manipulative objects and pictorial
representations for complex mathematics. The students
in this project who received CRA instruction performed
better on posttests and follow-up tests. They committed
fewer errors with negative numbers and with transfor-
mations of equations before solving for variables. This
research contributes to the growing understanding of al-
gebra instruction for students with learning disabilities
and those at risk for failure in secondary mathematics.
Continued research on helping students with disabilities
to understand algebraic concepts will improve students’
abilities to think abstractly and may improve graduation
rates.
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