CHAPTER 7

Perspective on “Radical Constructivism and Mathematics Education”

Leslie Steffe and Thomas Kieren’s contribution
to mathematics education research was a deeper
understanding of the implications of holding a
constructivist perspective consistently. The majori-
ty of American Piagetian studies that had been
done up to 1975 completely missed the point of
Piaget's genetic epistemotogy, which was to devel-
op an understanding that both respected the clear
evidence that children’s realities were unlike
adults” and vet spoke to what those realities might
be like and how children might construct them, so
that they contained the germs of adult mathemat-
ics and science.

Today, the idea that children construct their
own mathematics is taken for granted in mathe-
matics education research and in mathematics
education at large. But the ideas that the mathe-
matics children construct is impossible to “know,”
that researchers can build only theoretical models
of what children might know, and that children’s
mathematics is fundamentally unilike adult mathe-
matics are less widely accepted. Peopie find it dif-
ficult to understand how a field whose raison
d’étre is to design and improve the mathematics
that students learn could, at the same time, say
that students’ mathematical knowledge is funda--
mentally unkrowable, This radical stance is in
contrast with what von Glasersfeld {1995) calis
“trivial constructivism,” which acknowledges that
children construct their own krowledge but
assumes that it is unproblematic for researchers to
know what the chiidren construct.

The emergence of radical constructivism in
mathematics education paraileled a more general
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postmodern movement, away from ideas of truth
and being and toward greater understanding of sit-
uated existence, but the change in mathematics
education research also had deep roots in new
perspectives on the foundations of mathematics
and in Piaget’s genetic epistemology. Work in the
foundations of mathematics had led to an under-
standing of mathematics as contingent on the per-
spectives of the people making it. The logicists
(e.g., Russell & Whitehead), formaiists eg.,
Hilbert), and intuitionists (e.g., Brouwer) showed
that fundamentally different mathematical systems
could be built coherently. Piaget’s genetic episte-
mology, especially its focus on knowledge as
structured actions and operations and its growth
through generalization and reflection, offered a
way to think about people building mathematical
knowledge out of their material and social experi-
ence. Steffe and Kieren contributed to the evolu-
tion of constructivism in mathematics education
research by specifying the development of con-
ceptual operations that might underlie students’
mathematical knowing, and the necessity of doing
50 within the constraint that we cannot take for
granted what that knowledge is. Their account of
that evolution unpacks one solution to the para-
dox: How can a field whose raison d'étre is to
design and improve the mathematics students
should learn say simultaneously that students’
mathematical knowledge is fundamentally
unknowable?

—Patrick W. Thompson,
Vanderbilt University
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OUR intenfion in this article is to provide an inter-
pretation of the influence of constructivist
thought on mathematics educators starting around
1960 and proceeding on up to the present time, First,
we indicate how the initial influence of constructivist
thought stemmed mainly from Piaget’s cognitive-
development psychology rather than from his episte-
mology. In this, we point to what in retrospect
appears to be inevitable distortions in the interpreta-
tions of Piaget's psychology due primarily to its inter-

pretation in the framework of Cartesian epistemology.

Second, we identily a preconstructivist revolution in
research in mathematics education beginning in 1970
and proceeding on up to 1980. There were two subpe-
riods in this decade separated by Ernst von
Glasersfeld’s presentation of radical constructivism to
the Jear Piaget Society in Philadelphia in 1975. Third,
we mark the beginning of the constructivist revolu-
tion in mathematics education research by the publi-
cation of two important papers in the JRME
{Richards & van Glasersfeid, 1980; van Glasersfeld,
1981). Fourth, we indicate how the constructivist rev-
olution in mathematics education research served as
a period of preparation for the reform movement that
is currently underway in school mathematics.

CARTESIAN EPISTEMOLOGY

There are several classic documents that mark
the beginning of the influence of constructivist
thought on mathematics educators.! We start with the
report of the Woods Hole Conference, The Process of
Education, by J. 8. Bruner, because of the emphasis
by mathematics educators on the structure of the
subject in 1960 and its alleged relation to Plaget’s
cognitive-development psychology, We see the sepa-
ration between the structures of mathematics and
Piaget’s genetic structures in The Process of
Education as an expression of the classical dualisim
in the view of mind in Cartesian epistemology—an
endogenic (mind centered) vs. an exogenic (world
centered) view (Konold & Johnson, 1991; Gergen,
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1994). The structures of mathematics were thought to
be attained by capacities for reason, logic, or concep-
tual processing. In this, mathematical structures were
regarded as having a mind-independent existence, and
the function of rationality was to come to know these
fundamental structures.?

Readiness to Learn

A long guotation from a memorandum prepared
by Birbel Inhelder for the Woods Hole Conference
defined the capacities for reason and logic of young
children within the framework of Piaget’s cognitive-
development psychology (Bruner, 1960, pp. 41-46).
inhelder is cited by Bruner {1960) as follows:

Basic notions in these fields are perfectly accessible
to children of seven to ten years of age, provided that
they are divorced from their mathematical expres-
sions and studied through materiai that the child can
handle himself. {p. 43}

Based on Piaget’s genetic structures, the spirit was
that concrete operational children were ready to leam
and indeed could learn fundamental structures of
mathematics. This was the foundation for Bruner’s
{1960) famous concept of readiness to learn the funda-
mental structures of mathematics: “Any subject can be
taught effectively in some inteliectually honest form to
any child at any stage of development” (p. 33).3

Bruner’s concept of readiness to learn seemed to
be quite sweeping at the time. A reason why it may

I"There are important books, journal articles, conferences, and
events that we do not mention. Although acknowledging these con-
tributions, we can make ro attempt to be exhaustive.

2 In science education, knowledge was talken to be achieved
when the inner states of the individual represented states of the
external world—when mind served as a mirror of nature—and sci-
entific objectivily was reifled.

31t is from remarks such as the two citations from Inhelder and
Bruner that Piaget's work, and later constructivism with ils empha-
sis on experience, has been frequently tied to the notion of an indi-
vidual (usually a child) working with physical materials. Such limi-
tations are not necessary conditions for using constructivism in
mathematics education.



have seemed to make readiness to learn a nonissue is
that genefic structures were in the main ignored by
the developers of the modern mathematics programs.
In his report on the School Mathematics Study Group
(SMSG) at the Conference on Cognitive Studies and
Curriculum Development, Kilpatrick (1964) caught
the spirit of the times:

In a sense, the mathematicians who have guided the
recent curriculum reforms have been waiting to be
shown that psychological theories of learning and
intelligence have something relevant to say about
how mathematics shall be taught in the schoals.
These reformers (and I speak now not only of SMSG)
have been so successful in teaching relatively com-
plex ideas to young children, and thus doing consid-
erable violence to some old notions about readiness,
that they have become highly optimistic about what
mathematics can and should be taught in the early
grades. (p. 120

Kilpatrick provided an ad hoc analysis of those fea-
tures of SMSG that were most karmonious with the
results of Piaget's studies (which inciuded an empha-
8is on the structure of the subject matter by SMSG),
but the prevailing attitude of some curriculum devel-
opers was that Piaget was an observer rather than a
teacher {Goals for School Mathematics, 1963). The
thinking was that if Piaget had observed the mathe-
matical thought of children who participated in the
modern mathematics programs, he would have real-
ized the elasticity of the limits in their cognitive
processes.

Because we interpret Bruner's concept of readi-
ness as maintaining the distinction between funda-
mental structures of mathematics and Piaget’s genet-
ic structures, we believe that such thinking only
seemed compatible with Bruner’s concept. Not all of
the developers of modern mathematics programs
ignored Piaget's genetic structures, even though they
may have interpreted them in terms of Cartesian
epistemology. In these cases, Bruner's concept of
readiness o learn was not a nonissue., Rather, it was
& hypothesis.

We find it interesting that Bruner af times seemed
to conflate fundamental structures of mathematics
and Piagel’s genetic structures, as indicated by the
following quotation: “Good teaching that emphasizes
the structure of the subject is probably even more
valuable for the less able students than for the gifted
ones” (Bruner, 1960, p. 9). In this, we see Bruner
entangled in Cartesian anxiety because he turned to
the structure of the subject to secure a foundation for
children’s mathematical knowledge when capacities
for reason and logic were only minimally present.

[Cartesian anxiety] is an anxiety that permeates all
netaphysical and epistemological questions concern-
ing the existence of a stable and reliable rock upon
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which we can secure our thoughts and actions. As
Bernstein explains: “Either there is some support for
our being, a fixed foundation for our knowledge, or
we cannot escape the forces of darkness that enve-
lope us with madness, with intellectua) and moral
chaos™ (p. 18). (Konold & Johnson, 1991, p. 2)

The fundamental structures of mathematics
served as the fixed foundation for most of the devel-
opers of the modern mathematics programs. In those
cases, we believe that the curriculum developers
were, perhaps unintentionally, entangled in Cartesian
anxiety because they conflated mathematical struc-
tures and capacities for reason and logic. They appar-
ently felt no necessity to look beyond mathematical
structures to investigate what the mathematical
knowledge of students might be like. Even
Freudenthal (1973) showed little appreciation in his
critique of Piaget's mathematics that the genetic
structures he critiqued were formalizations of the
organization Piaget observed in children’s actions.

|
|

The Classical Dualism and Research in Mathematics
Education !

The Plagetian studies. Henry van Engen, while i
working at the Research and Development Center for 4‘
Cognitive Learning at the University of Wisconsin dur- .
ing the last haif of the 1960s (Van Engen, 19713, pro- :
vided leadership for a series of studies in mathemat- "
ics education that became known as “the Piagetian
studies” (e.g., Steffe, 1970; Kieren, 1971; Branca &

Kilpatrick, 1972; Johnson, 1974; Carpenter, 1975;
Mpiangu & Gentile, 1975; Martin, 1976; Silver, 1976;
Adi, 1978; Taloumis, 1979; Days, Wheatley, & Kuhn,
1979; Hiebert, Carpenter, & Moser, 1982). Some of the
Piagetian studies were devoted to investigaling the
readiness of young children to learn mathematics.
There were two basic types of readiness studies—cor-
refational and training. The hypothesis of the readi-
ness studies was that capacities for reason or logic
could be increased through intensive learning experi-
ences. If the hypothesis was not disconfirmed, then
the elasticity of the limits in cognitive processing
would be demonstrated and Piaget’s cognitive devel-
opment theory would be falsified as a theory of readi-
ness to learn mathematics.

Further, several mathematical analyses of Piaget’s
genetic structures were undertaken. The basic intent
was to logically demonstrate that basic mathematical
structures would serve as well as Plagetian genetic
structures as models of the mathematical lmowledge of
children. The logical analvses were generally followed
by an atterpt to use the mathematical structures 10
explain children’s mathematical behavior, Finally,
Inhelder's proposition cited above, along with the work
of Dienes, led to an interest in exploring the role of
play and manipulatives in mathematics teaching.
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An emerging shift in understanding. It was cer-
tainly a purposefud and exciting time for those
involved in the Piagetian research program. However,
we regarded Piagetian cognitive-development psy-
chology as a hypothetical-deductive system, and the
emphasis was on applying it in research in mathemat-
ics education. For this reason, the Piagetian research
program temporarily went into decline. Fortunately, a
shift emerged in understanding Piagetian theory,
thanks mainly to the efforts of Myron F. Rosskopf,
then chairman of the Department of Mathematical
Education at Teachers College, Columbia University.
Alter spending the academic year 1065-66 at. the
Wisconsin Research and Developmeni Center for
Cognitive Learning working with Henry van Engen,
Rosskopf felt that closer cooperation between the
Piagetians and mathematics educators was needed.
Toward this end, he organized the Greyston confer-
ence at Teachers Coliege, Columbia University
(Rosskopf, Steffe, & Taback, 1971). Rosskopf wrote:

From very small beginnings during the early years of
the 196{¥s, interest by mathematics educators in
Piagetian research broadened until at several univer-
sities students were working on doctoral disserta-
tions that clearly were almost as closely related to
child-development psychology as to mathematical
education. Uneasiness over little evidence of close
cooperation between psychologists and mathematics
educators led to ... a conference on Piaget type
research in mathematical education. (Rosskopf et al.,
p. vii}

An understanding that Piagetian theory could not be
simply applied to mathematics education was emerg-
ing. But the planning committee for the conference
still believed that the theory was a hypothetical
deductive system and were primarily interested in
Piaget’s account of the development of basic mathe-
matical concepts and operations.t This belief and
interest was indicated in Rosskopf’s letter of invita-
tion to Hermine Sinclair, the Genevan representative:

The committee planning the conference would like
you to be one of two principal lectures.... Hopefully,
you will direct your presentations to an explication of
Plaget's cognitive development investigations with
special reference to mathematics.

Sinclaiy, in opening the conference, took the opportu-
nity to comment on Piaget's genetic epistemology: “At
first sight it would seem that a psychological theory
that is regarded by its author as a “by-product” of his
epistemological research ... is ideally suited to educa-

1 The conference was cosponsored by the National Council of
Teachers of Mathematics, and the planning comumittee for the con-
ference was appointed by Juliug H. Hlavaty, then Past President of
the Council. It consisted of M. F. Rosskopf, L. P Steffe, and S.
Taback.

tional applications” (Sinclair, 1971, p. 13. But she did
not provide an explanation of constructivism, nor did
she provide any indication about how constructivism
might be useful in mathematics education. Instead,
she discussed Piaget's main stages, different types of
aperatory structures, and so on, which is what she
was asked to do.

Nativism vs. constructivism. Because of the
continuing interest in readiness to learn mathematics,
Harry Beilin also was asked to present a major paper
at the Greyston conference. The following is an
excerpl from Rosskopf’s letter of invitation:

An open question is whether training wili enable chil-
dren to reach a Piaget stage at an earlier age than oth-
erwise would be the case. You have carried out some
of the most relevant to mathermalics training investiga-
tions. Thus, we would like to suggest that you choose
for your subject a critical review of training research.

Although the planning commitiee had not antici-
pated that Beilin would bring the issue of innatism vs.
constructivisin forth in his paper, in retrospect, il is
not surprising that the issue arose in the context of
his review. After reviewing studies devoted to the
training of logical operations, Beilin (1971) stated the
innatist hypothesis in the following way:

The data demonstrating acquisition with a wide vari-
ety of training methods give further support to the
idea that the logical operational system is under the
control of a genetic mechanism that only permits the
programmed development of defined cognitive struc-
tures through interaction with environmental inputs.

(p- 114)

The epistemological conflict between construc-
tivism and innatism raised at the Greyston conference
was extensively discussed in a debate between Piaget
and Chomsky at the Royaumont conference five years
later (Piattelli-Palmarini, 1980). Piattelli-Paimarin
(1980) indicated that an allegiance to Cartesian episte-
mology is recurrent, in the Chomskian research pro-
gram, and that in generative linguistics, “all structure
comes from within’, Environment reveals this structure;
it does not imprint its own patlerns on the system” (p.
12). Because nativism stands in contrast to Piaget's con-
structivism, we find it irenic that the emphasis on the
structure of mathematics in the modern mathematics
movement of the 1860s found rationale in Piaget’s
cognitive-development psychology. From an epistemo-
logical point of view, the structuralism of the modern
mathematics programs was more compatible with
Chomsky's program, with its hasis in Cartesian episte-
mology, than it was with Piaget's program.

THE PRECONSTRUCTIVIST REVOLUTION

The Greyston conference marked the beginning
of what we call the preconstructivist revolution in
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research in mathematics education. It was precon-
structivist because most mathematics educators of
the time were yet to appreciate the revolutionary
implications of Piaget’s genetic epistemology. Thase
of us who were immersed in Piagetian studies had not
vet rejected empiricism as normal science in mathe-
matics education despite its rejection by both Piaget
and Chomsky. According to Mehler (1980), Piaget and
Chomsky shared certain opinions and positions.

One of the most important results that emerged from
the confrontation between Piaget and Chomsky at
Royaumoni was their convergent rejection of posi-
tivism and empiricism.... In this case, the environment
could ... be described as the independent variable,
while the behavior of a subiect under study would be
the dependent variable. (p. 350)

Mehler's comment concerning independent and
dependent variables illuminates the empiricist
assuimption underlying what we regarded as being
normal science in mathematics education research
throughout the 1960s and the first half of the 1970s.
The preconstructivist revolution was marked by a
rejection of this empiricist view and by a reformula-
tion of our understanding of Piaget's genetic struc-
tures. We finally came to understand Piaget’s genetic
structures as models that he made to explain his
observations of children's ways and means of operat-
ing rather than as a hypothetical-deductive system.
What seemed to be a major insight at the time did not
occur to us in one fell swoop. Rather, it was a result
of our struggles to use Piagetian theory in mathemat-
ics education. That we finally came to understand
that we needed to make our own models to serve our
educational purposes rather than to use Piaget’s
seemed to be a major breakthrough, and it was quite
liberating. In fact, the iong-lasting effects of this
observation can be seen in contemporary construc-
tivist research in which the researchers seek to
observe and describe mechanisms that children and
indeed persons of any age use as they, individually or
interactively, build up mathematical knowledge in a
particular learning space (Pothier & Sawada, 1983;
Pirie & Kieren, 1994; Steffe & Wiegel, 1094,
Thompson, 1994).

A Turn to Behaviorism

Another revolution in mathematics education was
occurting while the preconstructivist revolution in
research was underway. The modern mathematics
movement of the 1960s ran out of steam in the early
1970s, and the structuralist foundation for mathemati-
cal knowledge was replaced by a behaviorist interpre-
tation of rationality. The fundamental structures of
mathematics were replaced by long lists of hehavioral
objectives as the rational bridgehead. This tum to
behaviorism in the practice of mathematics education

did not create a major upheaval among researchers
operating from an empiricist assumption, because the
major influence of the structuralism of Cartesian epis-
temology was found in the practice of mathematics
teaching and curricuium planning rather than in the
practice of mathematics education research. So, when
a backdash to the modermn mathematics movement was
manifest in a turn to hehaviorism, this back-to-basics
movement was felt at the level of the practice of teach-
ing rather than at the level of the practice of research.

More than any other single factor, the separation
between the practice of teaching and the practice of
research paved the way for the emergence of construc-
tivism in mathematics education. Those of us who
were doing research in mathematies education were
also mathematics teachers or curriculum developers,
so the separation was manifest as a crisis in identity.
How could ore claim to be a researcher in mathemat-
ics education and still maintain his or her identity as a
matheniatics teacher? Could there be a field of mathe-
matics education where the practice of research and
the practice of teaching were not simply compatible,
but inseparable parts of a lived experience?

Eriwanger’s Benny

If there ever was a “crucial experiment” in mathe-
matics education, the work of Stanley Erlwanger
(1973) would have to qualify. In one ingenious stroke,
Eritwanger was able to falsify the behavioristic move-
ment in the practice of mathematics teaching (in
Lakatos’s sense of sophisticated falsificationism).
According to Lakatos (1870):

For the naive falsificationist a ‘refutation’ is an exper-
imental result which, by force of his decisions, is made
to conflict with the theory under test. But according to
sophisticated falsificationism one must not make such
decisions before the alleged ‘refufing instance’ has
become the confinming instance of a new, beller theo-
ry. (p. 1223

By concentrating on the beliefs of mathematical
rules and answers of a child, Benny, who participated
in the program Individualized Prescribed Instruction
(IPI) produced by the Pittsburgh Research and
Deveiopment Center, Erlwanger was able to demon-
strate how Benny’s understanding of mathematics
conflicted with any “comimron sense” understanding of
what would be regarded as “good mathematics.” This
was a crucial aspect of Erlwanger’s work, because by
demonsfrating what a “common sense” view of math-
ematics should not be, Erlwanger was able to falsify
(najvely) the behavioristic movement in mathematics
education at that very place where behaviorism has
its greatest appeal—at the level of common sense.

But Erlwanger was able to accomplish more. His
study, conducted under the direction of Jack Easley
at the University of Illinois—one of the forerunners
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of the constructivist movement in science education
in the U.5.—focused on the mathematical thinking of
an individual child. Erlwanger interpreted that think-
ing in a constructivist framework and was able to
demonstrate an understanding of a science of mathe-
matics education different from empiricism. In his
work, statistics derived from resulis on measures
did not form the core. Rather, Erlwanger tried to
show in detall how Benny “made sense” of his expe-
riences in IPL In doing so, he considered the corpus
of Benny’s interactions within the IPI world in which
Benny found himself.

Eriwanger demonstrated the power of interpreta-
tive research as well as the need for alternative
methodologies. Although he did not enunciate its con-
structs noy its associated problems or methodologies,
in retrospect, Erlwanger's work was a confirming
instance of an emerging “new, better theory.” This
worl, in fzct, was also one of the first to focus on
both the structural dynamics of an individual, as inter-
preted from the actions and words of Benny, and on
the interactional dynamics between Benny and the
ways in which the IPI environment occasioned his
actions. In this, the IPI environment was changed by
Benny through his actions and through his interac-
tions with others in this environment. Studies of both
types of dynamics became the halimark of later con-
structivist research in mathematics education.

A Shift in Normal Science

At the same time that Erlwanger was working
with Jack Easley at the University of Illinois, the late
Charles Smock of the Department of Psychology at
the University of Georgia was working to formulate a
constructivist research and development program in
mathematics education, including the development of
a methodology for research that was an adaptation of
Piaget’s clinical interview. It was difficult, however, to
overthrow the tyranny of the empiricist view of nor-
mal science in mathematics education and to emerge
from the stranglehold that empiricism had on the
practice of research.’ Perhaps this struggle is best
illustrated by the fact that it wasn’t until 1983 that an
article was published in the JEME with “construc-
tivist” in the titie (Cobb, & Steffe, 1983). There, it was
argued that the constructivist researcher needed to be
a teacher as well as a model builder, which pushed
research methodology beyond the clinical interview.

5 The preconstructivist revolution was buttressed by the work of
lzaak Wirszup of the University of Chicage, who led the Swivey of
Recent East European Mathematical Literature. Through Wirszup's
leadership, mathematics educators became familiar with the work
of L. 8. Vygotsky and with what Menchinskaya {1969) cailed the
“genetic method of research” (p. 6) along with the new methods of
research that it implied-—the “teaching experiment.” Our claim is
not that Vygotsky's work caused the preconstlructivist revolution,
Rather, it served an influencing and supporting role.

The nature and the philosophical intent of the
teacherresearcher was summed up as follows:

It is not the adult’s interventions per se that influence
children’s constructions, but the children’s experience
of these interventions as interpreted in terms of their
own conceptual structures.... The adult cannot cause
the child to have experience qua experience. (p. 88)

In a teaching experiment, it is the mathematical
actions angd abstractions of children that are the
source of understanding for the teacherresearcher.
The teacher, to use the ideas of Varela, Thompson,
and Rosch (1981}, helps provide occasions for chil-
dren's mathematical activity, but it is the children’s
way of making sense that determines their own
lnowledge.

The struggle to reformulate “normal science” in
mathematics education research during the 1970s
found expression in the JRMFE in the latter part of the
decade. Cobumn (1978) published a set of criteria for
Jjudging research proposals and reports that had been
written by the Research Advisory Committee of the
National Council of Teachers of Mathematics. These
criteria generated controversy concerning the nature
of research in mathematics education (Fennema,
1978; Wheeler, 1978; Lester & Kerr, 1979; Webb,
1979)—between “laboratory” and “naturaiistic” stud-
ies. The controversy, however, did not center on the
perspectives of the researchers doing or evaluating
research until Thompson’s (1982) landmark piece was
published:

Webly's remark suggests the mistake of the RAC
{Research Advisory Committee) was in not taking a
broader view of research in mathematics education,
meaning a view that would encompass both laboratory
and naturalistic studies ... as valid instances of scien-
tific research. 1 will argue instead that what is called
for is not a broader view, but an acknowledgement of a
multiplicity of views ..., quite possibly each being irrec-
oncilabie with the others. (Thompson, 1882, p. 149)

It is probably fair to say that the JEME, over the
last 12 years, has provided for this multiplicity of
views. In doing so, it provided for ongoing discus-
sion between constructivist views and other views
on mathematics education theory and research. It is
interesting to note that constructivism was ofien
implicit in the discussions (Hiebert et al., 1983;
Steffe & Cobb, 1983; and Gagné, 1983; Steffe &
Blake, 1983). For example, the two key construe-
tivist points—

* using “conservation” and mathematics perform-
ance as variables does not provide a way of see-
ing how childrer build up mathematical ideas;

¢ children with different developmental back-
grounds may well be able to get the same
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answers on an arithmetical task, but the ways in
which they do so might differ significantly

—are only implicit in the Steffe and Cobb critique of
the article by Hiebert et al. (1982). The explicit
nature of Plagetian constructivism (as opposed to
Plagetian “developiiental psychology™ and its poten-
tial contribution to research and theory in mathemat-
ies education did not stand out in the critique,

Constructivism Made Explicit

A fertile ground had been prepared for an emer-
gence of Piaget’s constructivism in research in mathe-
matics education, but it took the work of Ernst von
Glasersfeld (1984; 1987) to bring it forth through his
work in the project, Interdisciplinary Research on
Number at the University of Georgia. Historically, it
may seem that von Glasersfeld was present from 1960
forward, waiting for the right moment to etch his
brand of constructivism into the collective CONscious-
ness of mathematics educators. However, this was
not the case at all. We leave it to his forthcoming
book on radical constructivism (von Glasersfeld,
1995) for an elaboration of Jjust how it happened that
he became a member of the Department of
Psychology at the University of Georgia in 1969 after
having arrived in the United States from Ttaly in 1966
to continue work on & machine translation project
sponsored by the U.S. Air Force. Jt was only through
what von Glasersfeld calls “unexpected breaks with
the past” that he became introduced to the work of
Jean Piaget by Charles Smock. With this introduction,
the way was opened for a new revolution in mathe-
matics education of a magnitude no less than the
modern mathematics movement of the 1960s. In con-
lrast to the modern mathematics movement, the revo-
lutien first occurred in research in mathematics edu-
cation, and only then did it begin to influence the
practice of mathematjcs teaching,

Von Glasersfeld presented his “radical” interpreta-
tion of Piaget’s genetic epistemology ta the Jean
Piaget Society in Philadelphia in 1975, This presenta-
tion, along with the establishment of the Georgia
Center for the Study of the Learning and Teaching of
Mathematics in the same year, marked a separation in
the 10-year period of the preconstructivist revolution
in research. The basic idea of The Georgia Center was
to establish a community of researchers in mathemat-
ics education working on problems of interest to the
community, where the experience of the researcher,
conceptual analysis, and social interaction replaced
the controlled experiment as “normal science.” No
longer did it seem necessary to use the controlled
experiment with its emphasis on statistical tests of
null hypotheses and empirical generalization to claim
that one was working scientifically.
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THE CONSTRUCTIVIST REVOLUTION

The members of the Editorial Board of the JRME
were aware of von Glasersfeld's work and Lbrought it
to the readership of the JRME in two quite important
publications (Richards & von Glasersfeld, 1980; von
Glasersfeld, 1981). In the first, von Glasersfeld and
Richards were able to successfully differentiate the
radical aspect of Piaget's genetic epistemology from
what von Glasersfeld (1989) 9 years later called triv-
ial construectivism—a form of constructivism that
asserts that children graduaily builg up their cogni-
tive structures while maintaining that the cognitive
structures being built up are reflections of an onto-
logical reality. Trivial constructivism was what math-
ematics education began with in 1960 with Jerome
Bruner's The Process of Fducation, and it took 20
years for it to be publicly challenged in a2 mathemat-
ics education journal. In hindsight, the editor of the
JRME demonstrated a sense of an important hisiori-
cal movement in research in mathematics education,
and the field of mathematics education owes a great
deal to his foresight.

In the second publication, von Glasersfeld
opened a new way of doing science in mathematics
education through what he calls conceptual analysis. {
What came to be known as the constructivist teach-
ing experiment had already emerged from the pre-
consiructivist revolution at the time of von
Glasersfeld's two publications, but the conceptual
analyses involved in building second-order models of
chiidren’s mathematics were underspecified.s In its
original form, the constructivist teaching experiment.
was an attempl to bridge the gap between research
and practice and was a hybrid of Piaget’s clinical
method and mathematics teaching. In its later form,
it included conceptual analysis as a way to build
models of children’'s mathematical knowledge and its
construction.

The Construction of Reality

Two key ideas emerged from the Richards and
von Glasersteld (1980) and the von Glasersfeld (1981
papers. The first is the notion that individuals con-
struct their own reality through actions and reflec-
tions on actions. Although individuals acdlapt to remain
“viable” in action in their world of experience, the
individuals' concepts of reality are not some mirror.

8 First-order models are (hose models the observed subject con-
structs to order, comprehend, and control his or her experience.
Second-order models are those mzodels the observer constructs of
the sulyject’s knowledge in order to explain their chservations or
experience of the subject’s states and activilies (Steffe, von Glasers-
feld, Richards, & Cobb, 1983, P xvi).
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There is no uitimate progress and there is no “con-
gruity” of knowledge and reality. There is adaptation
but adaptation means that there are viable organisms
and viable theories. (p. 35)

In this radical version of constructivism,

Reality in some absolute sense [lies] beyond the
sphere of experiential justification. {Richards & von
Glasersfeld, 1980, p, 35

Thus, as Richards and von Glasersfeld (1980) claimed
for the work of Piagel, in constructivism one is not
studying reality, but the construction of reality. In
mathematics education, this means that one is study-
ing the construction of mathematical reality by indi-
viduals within the space of their experience. In this
construction, although there may be weli-defined
tasks or spaces for experience, there are 1o pregiven
preseribed ends toward which this construction
strives. There is no optimal selection of the individ-
ual’s actions or ideas by the environment, nor is some
perfect internal representation or match against an
external environment the test of the constructed
“reality.” The constraints experienced by the con-
structing person are proscriptive and not preseriptive
in nature, and the “reality” constructed is “good
enough” for allowing effective action by the person,
which need not be physical action, in the space of
experience.

Modeling the Constructive Process

As constructivist mathematics education
researchers, we became oriented toward studying the
construction of mathematical concepts and the opera-
tions by which children attend to and organize their
experiences. In this, we were guided by Piaget’s
genetic epistemnology rather than by his cognitive-
development psychology. Piattelli-Palmarini (1980}
regarded the Plagetian program to be based on the
following comment made by Piaget:

Cognitive processes seem, then, to be at one and the
same time the outcome of organic autoregulation,
reflecting its essential mechanisms, and the most high-
ly differentiated organs of this regulation at the core of
interactions with the environment (p. 26). (p. 4)

Understanding cognitive processes as an out-
come of autoregulation and interaction served as a
basis of our neo-Piagetian research program in
mathematics education, but we were not committed
to the proposition that Piaget’s genetic structures
were the necessary outcome of the functioning of
mind (Kieren, 1976; Steffe, von Glasersfeld,
Richards, & Cobb, 1983). We were committed to
building models of the constructive process and
understood that process as being an outcome of
individual-environment interaction.

RADICAL CONSTRUCTIVISM AND MATHEMATICS EDUCATION

Modeling became the primary means by which we
made a distinction between our activities as teachers
and our activities as researchers in constructivist
teaching experiments. A model consists of coordinat-
ed schemes of actions and operations that the
researcher constructs out of his or her experience of
children’s actions. Such modeis had both general and
specific qualities:

On one hand, the model should be general enough to
account for other children’s mathematical progress.
On the other hand, it should be specific enough to
account for a particular child’s progress in a particu-
lar instructional setting. (Cobb & Steffe, 1883, p. 91)

This was to be accomplished through a dialectical
interaction between the theorizing and the observing
of researchers in teaching experiments. Such models
not only provided an explanation of recurrent pat-
terns in children’s mathematical behavior; because
the researcher was also a teacher, the models also
provided an explanation of progress children were
observed to make under the influence of construc-
livist teaching.

The possibility for a “children’s mathematics”
emerged from the teaching experiment in the broader
community of constructivist researchers. Children’s
mathematics consists of changing and growing sets of
coordinated schemes of action and operation related
to central mathematical topics (e.g., whole numbers:
addition and subtraction) or to topics of a larger scale
such as additive and muliiplicative structures
{(Vergnaud, 1982). Such “second-order” mathematics is
the creation of the researcher based on intensive
analysis of children’s mathematical behavior and can
be constructed only through social interaction. So, in
constructivist mathematics education, the activities of
the teacherresearcher and those of the children are
co-implicative (cf. Confrey, 1990; Steier, 1995}, It is
perhaps this phenomenolagical consideration of chil-
dren’s mathematics arising in interaction with a
teacher in very particular spaces of mathematical pos-
sibilities that has led to whatever influence construe-
tivist research has had on reformers in mathematics
curriculum and teaching. Observing and listening to
the mathematical activities of students is a powerful
source and guide for teaching, for curriculurm, and for
ways in which growth in student understanding could
be evaluated.

Discussion and Debate

A view of mathematical knowledge and mathe-
matics education research that differed radically from
the traditional conceptualizations could be expected
to generate discussion and debate. In a frequently
charged discussion at the 1987 conference on the
Psychology of Mathematics Education (PME? in
Montreal, the “radical” assumption of constructivism
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was questioned in mathematics education (Kilpatrick,
1987

We need an epistemology that takes ontology into
account, “We must keep metaphysics and epistemoio-
gy tied together sc¢ that (a) our explanation of
Enowledge does not leave us committed to there
being things we cannot account for in our theory of
Being, and (b) our theory of Knowledge (thus restrict-
ed) can accomniodate our claim to know what Being
18" (McClellan, 1981, p. 265). p. 1D

Constractivisim was also criticized as a solipsistic
position at the Montreal meeting (Vergnaud, 1987;
Whealer, 1987) even though von Glasersfeid (1984)
and von Foerster (1984) had already made counter
arguments. These critics of radical constructivism
seemed to be caught up in the throes of Cartesian
anxiety. From the debate, however, it was ciear that
constructivists needed to somehow, in the words of
Konold and Johnson (1991), “address questions about
. the ultimate medium ... that serves as the setting for
constructive activity” (p. 4). This was an interesting
turn, because the problem of the relation between
research and practice reemerged in that case where
the “ultimate medium” referred to the practice of
mathematics teaching,

Rather than resurrect the classical duality, con-
structivist mathematics educators instead chose o
concenirate on mathematical rezlities constructed
through interaction among human beings. Following
Maturana’s (1978, pp. 45-46) analysis that asserting
the existence of an object is tantamount to bringing it
forth through “languaging” and giving it form in the
domain of consensual coordination of action in which
we exist as human beings, the study of practice in a
constructivist mathematics education is centering on
interactive mathematical communication and the con-
sensual domains produced (Cobb et al., 1991).

Empivicism vs. constructivism. The Montreal
debate, perhaps more than any other social event,
served to clarify the nonsolipsistic but radical
assumption of constructivism in mathematics educa-
tion. Prior to the Montreal debate, a heated exchange
had taken place hetween Brophy and Confrey in a
1986 issue of the JRAME. Confrey (1986) used con-
structivist arguments to question the effectiveness of
various outcome-based practices toward which
Brophy was directing his educational research. In his
response to Confrey’s criticisms, Brophy made the fol-
lowing comments about constructivist research:

If it is to be of much practical use, however, such input
will have to become much more specifie, prescriptive,
and empirically based. ... It will have to come to grips
with the challenge facing the typical K-12 teacher
(teach 20 to 40 students to preset curriculum ohjec-
tives while working within time and resource con-
straints), and it will have to include process-outcome
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data that allow for a scientific assessment of the
hypothesized effects of recommended procedures,
Until they begin to produce such information .., con-
structivists ... who have not yet done so can continue
Lo expect scholars 10 ask “Where are the data?”
{Brophy. 1986b, p. 367)

Brophy's comments are best interpreted in terms of
an emplricist view of normal science, where the envi-
ronment is the independent variable and the behavior
of the subjects under study is the dependent variable
(Mehier, 1980). The same separation between
research and practice was implicit in Brophy's com-
ment that plagued mathematics educators in the two
previous decades, an issue that was, not surprisingly,
left unresolved in the debate.

The explicit necessity to include the actions and
operations of the researcher in the research enter-
prise is a key in bridging the gap between the practice
of research and the practice of mathematics teaching.
This recessity has been explicitly elaborated by
Confrey (1995):

When we seek to speak of cognition, education, prob-
lem sciving, mathematics, or learning and teaching,
we must take particular care to recognize the role of
the observer in the description and analysis of the
problem. In the radical constructivist research pro-
gram, this has meant establishing clear methodologi-
cal guidelines concerning the importance of “close lis-
tening.” (p. 196)

The necessity to include the observer in the
research enterprise drove the carly development of
the constructivist teaching experiment in which the
constructing mathematical child was of central con-
cern. An extensive corpus of “data” concerning con-
structive activity is available from such teaching
experiments, though perhaps not the kind of “data”
acceptable by those of an empiricist and representa-
tionist bent (e.g., Confrey, 199%; Kieren & Pirie, 1991,
Thorepson, 1994).

Interactive mathematical communication. From
the background of working in teaching experiments
where the goal was to specify a mathematics of chil-
dren, Cobb and Wheatley mounted & research pro-
gram at Purdue University where the goal was to
focus on social interaction in the ciassroom, As
reported in the JRME (Cobb et. al,, 19913, the
researchers on the project took the results of their
work as an indication that a constructivist “problem
centered instructional approach in which the feacher
and students engage in discourse that has mathemati-
cal meaning as its theme is feasible in the public
school classroom” (p. 25).

But such research went heyond “ernpirical
resuits.” The research and related teaching activities
showed in detail how constructivism might manifest
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itself through problem challenges, small-group work,
and ¢lassroom discussions using what appeared to be
“ordinary” curricuium materials with ordinary classes.
As seen in Yackel, Cobb, & Wood (1991) and particu-
larly in Cobb, Yackel, & Wood (1992), evidence and
arguments were made supporting a constructivist,
nonrepresentationist view of mind useful for
researchers and {eachers as they think about mathe-
matics education. They claim that an “approach that
views mathematics as both an individual and a collec-
tive activity transcends the contradictions of the rep-
resentational view and offers an account of truth, cer-
tainty, and intersubjectivity” (p. 3). At the heart of
their approach stands a discussion of how social
interaction and individual constraction of mathemat-
ics fit together:

Both explicit problems and conflicts that arise in the
course of social interactions and the generally unne-
ticed mutnal appropriations of meanings that occur in
any communicative interaction serve as occasions for
individual studenis’ constructive activities.... an
account of a student’s mathermatical learning in a class-
room should consider the development of both the
taken-as-sharved, communal meanings and practices
and the individual student’s personal meanings and
practices. (p. 18)

A competing paradigm. A discussion of the
debates involving radical constructivism in mathemat-
ics education research would not be complete with-
out at least mentioning the debates that arose as a
result of the influence of information-processing psy-
chology in mathematics education. The debates clari-
fied the differences between the innatist models of
number development provided by those working in
information processing and the models of the con-
struction of number of those working in radical con-
structivism. For example, in the proceedings of the
Wingspread Conference, Addilion and Subiraction: A
Cogmnitive Perspective (Carpenter, Romberg, and
Moser, 1982), Starkey and Gelman {1982) commented
as follows:

It appears that coming to know about number is much
like coming to know about language (Gelman, 1879}
The ability to leain language is rule governed; the abil-
ity 1o count verbally is rule governed.... These find-
ings, taken as a whole, support the view that some
number abilities are natural human abilities in the
same sense that some language abilities are natural
human abitities (Gelman & Galliste, 1978). (p. 113)

Starkey and Gelman proceeded on, criticizing Piaget’s
developmental model of children’s construction of
number, apparently unaware of the neo-Piagetian
work in mathematics education that focused on chil-
dren'’s construction of counting schemes. This point is
important because Starkey and Gelman appeared to
believe that a Piagetian view would exclude a study

of children's construction of counting schemes: “As
such, this view (in confrast to the Piagetian view}
emphasizes the importance of counting.” (p. 113).

The innatist hypothesis aiso served as a basic but
perhaps implicit tenet for other models of number
development influenced by information-processing
psychology (e.g., Riley, Greeno, & Heller, 1983; Briars
& Larkin, 1984; De Corte & Verschaffel, 1985). Cobb
(1987} provided an extensive analysis of the work of
Briars and Larkin, and of Riley, Greeno, and Heller,
and contrasted these two information-processing
models with a neo-Piagetian model of the construc-
tion of counting schemes based in radical construc-
tivism {Steffe et al., 1983). Cobb based his analysis on
three implicit principles. The first was that the
innatist hypothesis served as a basis {or the informa-
tion-processing approach, which is to explain “how
children build up problem representations from the
information in a problem statement.... The explana-
tion of this process should ideally take the form of an
executable computer program whose output matches
that of humans” (Cobb, p. 171). Cobb conumented that
“Steffe et al. developed a model that cannot be
expressed in the precise formalisms of a computer
language” (p. 176). The second principie impiicit in
Cobb's comment is that the constructivist model was
based on a particular interpretation of Piaget’s reflec-
five abstraction. Because reflective absiraction can-
not be an operation of an executable computer pro-
gram, Cobb pointed oul that information-processing
models do not account for the construction of mathe-
matics by human beings. To be comprehensible as
developmentat models, they have to be at least implic-
itly based on the innatist hypothesis.

The third point implicit in Cobb's analysis super-
sedes the first two. The model of children’s construc-
tion of counting schemes was a resuli of & conceptu-
al analysis of children’s mathematical language and
actions as they participated in teaching episodes. As
such, it was a product of reflective abstraction by the
madel builders and consisted of a constellation of
conceptual constructs that they found useful in con-
structing children’s counting schemes. It was not an
objective model that could be simply appiied in dif-
ferent contexts. Rather, it would be useful for a
teacher or any other adult interested in children’s
mathematics only to the extent that it reemerged in
interactive mathematical communication with chil-
dren as spontaneous and independent contributions
of the children.

So, the conflict between innatism and construe-
tivism that served as a basis for the debate between
Chomsky and Piaget was essentially replayed in the
debates in mathematics education concerning informa-
tion-processing models of number development arvid
models of children’s construction of number. But the
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key for Cobb lay not in the artifacis of this conflict-—
such as whether being able to develop computer mod-
els of mathematical behavior was a marker of success-
ful research—nor in showing whether or not the brain
had certain features or properties. Cobb was pointing
to a critical difference in perception of what persons
engaged in mathematical activity were doing: Were per-
sons building up mental representations that in some
way pictured or matched a pregiven worid? Or were
these persons building up their own schemes for suc-
cessful action determined by their own structures and
histories of interaction and action in an enviror iment:
and by their abstract reflections on such action and
interaction? That is, Cobb was pointing to the critical
distinctions between representationist accounts of per-
sonal mathematical activity and nonr epresentationist
accounts developed by constructivist researchers. In
his conclusion, Cobb (1987) acknowledged the conflic-
tive nature of the differing assunptions:

Adherents to anyone of the research programs will
find the choice between the three moadels relatively
unproblematic. Gthers who are less commitied will
not find things so straightforward.... Uncommitted
readers wiil probably agree with Kuhn's (3977) obser-
vation that when criteria are “deployed together, they
repeatedly prove to be in conflict” (p. 322). (p. 177

In both the information-processing models and
the constructivist modeis, there was significant atten-
tion given to children’s nuumerical operations. In fact,
it was Kieren (1980) who dubbed these operations

“constructive mechanisms.” Studies involving such
mechanisms that go beyond early number construc-
tion by children appeared in the JRME as well (e.g.
Hunting, 1983; Pothier & Sawada, 1983; Behr et al,,
1984; Noss, 1987; Thompson & Dreyfus, 1688,
Clements & Battista, 1989; Davis & Pitket y, 1990;
Olive, 1991; Williams, 1991; Lamon, 1293). Although
some of these studies focused mainty on physical
actions by students of various ages and the interpreta-
tion of these actions, some considered the nature and
products of reflective abstraction. For example, in a
report on college students working on algebraic word
problems, Clement (1984) saw distinguishing numeri-
cal concepts from an object background and inveni-
ing “hypothetical operation on the variables that cre-
ates an equivalence” as keys to successful work by
students. The fact that studying mathematical knowl-
edge construction in the work of individuals is not
equivatent to studying physical actions and work with
concrete materials is highlighted in this comment.
Thus, at least in some instances in reports in the
JEME throughout the 1980s, the vision of construe-
tivism as tied to physical activities—perhaps a misin-
terpretation of earlier remarks by Bruner or Inhelder
for that matter—is dispelled.
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FINAL COMMENTS

Although we have not begun to tell the whole
story, what we have wrilten above is one portrayval of
the development of constructivism as a living force in
mathenzatics education over the last 30-some years. As
we have suggested, some of the contributors to this
story of constructivism in mathematics education ¢lid
80 intentionally, but many, including many of its crit-
ics, did not. We tried to show that constructivism in
mathematics education and in its reportage in the
JEME moved from an almost hidden, stiil dualistic
phenomenon in the 1960s and 1970s, to a more
defined, evolving, and seemingly individualiy oriented
but seriously challenged system for mathematical
knowing in the mid 1980s, to an interactionist but non-
representationist view of mathematical knowing and
teaching today.

Such research focused on building up the mathe-
matics of children—second-order models of how chil-
dren construct personal mathematical concepis and
operations that are stripped of their physical content,
not needing the actions that brought them forth.
These researcher modeis arose out of mtcrprennd
children’s actions in particular environments. Bu
rather than thinking that the environment causcd the
children’s thoughts and actions or that such thoughts
were Imirrors of the environment, the creators of con-
structivist modeis thought it clearer and better (o
think of the person’s actions to be determined by that
person’s own conceptual structures. The creators of
such modets did not see such structures either as
innate nor as simply emergent phenomena arising out
of brain activity. They saw such personal knowledge
structures as plastic and arising out of reflective
abstraction on action and interaction in a world that
such structures allow the person to bring about or
construct. In that sense the person’s krnowledge struc-
tures and the world of action out of which they arise
are co-implicative.

The actions and operations of the children were
not seen to simply arise from the children themselves.
They were observed to be occasioned by the environ-
ment, including the actions and language of peers and
teachers, as well as by the taken-to-be-shared mean-
ings that arose in the setting of classroom communi-
ties. Because of this emphasis in constructivist
research on interaction or coimplication of personal
knowledge and environmental possibilities, the very
hature of the activities and products of this research
provide meaning for mathematics teaching and learn-
ing that teachers can use to build their own models
for their own actions in practice. Because construc-
tivist research has songht means by which persons

can construct their own mathematical know ledge
sfructures, one of the products of such research has
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been descriptions of a variety of constructs (e.g.,
various kinds and levels of units pertaining to natural
numbers, rational numbers, and ratios) and construc-
tive mechanisms (e.g., unitizing operations, partition-
ing operations, proportionality operations, unit com-
positions and decompositions). Such descriptions can
serve the practicing teacher in two ways. First, they
provide guides for listening to and observing students.
Second, they provide poieniial sources both for the
content and organization of various mathematical cwr-
ricula. Further, because of the priority given to chil-
dren’s activities as an occasioning source for con-
structivist models of mathematical activity, the very
actions of constructivist teachers in listening to, in
questioning, and in moedeling children’s structures as
well as in providing spaces for children’s mathemati-
cal activity provide provocative examples for the
practice of mathematics teaching. Given such poten-
tial, it is perhaps not surprising that influences of con-
structivist approaches to mathematical learning and
teaching are apparent in both the curriculum and
evaluation and the teaching standards of the National
Council of Teachers of Mathernatics (1989, 1991).

Although by no means the only journal or venue
for constructivist thought in the 1980s and the 1990s,
the JRME proved supportive to radical constructivism
in that it published theorstical and research papers by
its key exponents as well as preconstructivist and
related papers on mechanisms for mathematics know-
ing over the last 15 years. As well as reviewing numer-
ous recent hooks related to constructivism in mathe-
rmatics education, the JRME has served as a continu-
ing forum for debate and ¢riticism on both theoretical
and research issues related to constructivism in
mathematics education.
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