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Chapter 0

Introduction

We have seen that reflections and half turns are their own inverses, that is
M−1

l = Ml and H−1
O = HO, or equivalently, M2

l = I and H2
0 = I, where I is

the identity function on the plane. No other isometries or similarity transfor-
mations have this property. However, a new transformation — inversion in a
circle — which will be introduced in this supplement, also is its own inverse.
This particular transformation was probably first introduced by Apollonius
of Perga (225 BCE – 190 BCE). The systematic investigation of inversions
began with Jakob Steiner (1796-1863) in the 1820s [?], who made many ge-
ometric discoveries using inversions by the age of 28. During the following
decades, many physicists and mathematicians independelty rediscovered in-
versions, proving the properties that were most useful for their particular
applications. For example, William Thomson used inversions to calculate
the effect of a point charge on a nearby conductor made of two intersecting
planes [?]. In 1855, August F. Möbius gave the first comprehensive treat-
ment of inversions, and Mario Pieri developed the subject axiomatically and
systematically in New Principles of the Geometry of Inversions, memoirs I
and II in the early 1910s, proving all of the known results as its own geometry
independent of Euclidean geometry [?].

An inversion in a circle, informally, is a transformation of the plane that
flips the circle inside-out. That is, points outside the circle get mapped to
points inside the circle, and points inside the circle get mapped outside the
circle.

Definition 0.1. Let C be a circle with radius r and center O. Let T be the
map that takes a point P to a point P ′ on the rayOP such thatOP ·OP ′ = r2.
Then, T is an inversion in the circle C.
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Often, an inversion in a circle is referred to simply as an inversion. Notice
that points inside the circle and close to the center, O, get sent to points that
are very far away from the circle. In addition, it can be easily verified that
points on C are fixed by inversion in C. However, there is one point in the
plane that does not have an image under inversion, O. As P gets closer to O,
P ′ get farther away from O, so in some sense, we can think of O as mapping
to a point at infinity. We will explore this in more detail in Chapter ??,
with a geometric interpretation on the sphere. For now, we will say that the
center of the circle of inversion, O, is mapped to a “point at infinity” on the
extended plane, and O will be called the center of the inversion. Note that
if P maps to P ′, then P ′ also maps to P . We say that P and P ′ are inverses
with respect to the inversion in C.

Problem 1. Given a circle C with center O and a point P , we would like
to be able to construct the image of P under inversion in C. We will do this
for a point P outside the circle C.

h

a1

a

c

b1

b

DA

C

B

Figure 1: A right triangle ABC with b2 = b1c.

Investigation: Given a point P , we would like to construct a point P ′ such
that OP · OP ′ = r2. This brings to mind the result from Euclid’s proof of
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the Pythagorean theorem (pages 132-134 in the text). In Figure ??, b2 = b1c
where c is the hypotenuse and b1 the projection of leg b onto the hypotenuse.

Consequently, we have the following construction.
Construction: Construct a circle through O centered at the midpoint of OP .
Let A be one of the two points of intersection of this circle with C. Construct
the perpendicular to OP that passes through A. Then P ′ is the intersection
of this perpendicular with OP (see Figure ??).

C

P'

A

O P

Figure 2: Construction of the inverse of a point P outside the circle C of inversion.

Proof. By construction, ∠AP ′O is a right angle, since AP ′ ⊥ OP . Also,
∠OAP is a right angle since it is the inscribed angle of a semicircle. Because
∠AOP = ∠AOP ′, the two triangles 4AOP ′ and 4POA are similar.

Consequently, the ratios of corresponding sides are equal. Therefore,

OP

OA
=
OA

OP ′
.

Letting OA = r, we have that OP ·OP ′ = r2. So P ′ is the inverse of P .

We will now introduce some notation. If C is a circle, we will write the
inversion with respect to C as IC , so that if P ′ is the inverse of P , then
IC(P ) = P ′. Notice that IC(P ′) = P also, so that IC(IC(P )) = IC(P ′) =
P . Thus, I2

C = IC ◦ IC is the identity function on the plane. Recall that
reflection Ml in a line l also has the same property, that is M2

l is the identity
transformation.

In fact, inversion in a circle is related to reflection in a line in another
way. Let l be a line, with P ′ = Ml(P ) the reflection of P in l. Take circles

C1, C2, C3 . . . tangent to l with centers O1, O2, O3, . . . such that
←−→
O1P ⊥ l and

P between Oi and l for each i as in Figure ??. Construct the inverse of P
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in circle Ci and call it Pi = ICi
(P ). Notice that Pi appears to approach the

reflection P ′ of P as i gets bigger (for an interactive demonstration, see [?]).

C
1

C
3

C
2

l

QPO
2O

3
O

1

P
1P

2
P

3

P'

Figure 3: As the circles Ci get bigger, the inverses Pi = ICi
(P ) approach the reflection P ′.

Now, let’s prove that Pi in fact does approach P ′. First, notice that by
definition of inversion, OiP ·OiPi = r2

i where ri is the radius of Ci. Thus,

OiPi =
r2
i

OiP
.

but OiP = OiQ−QP = ri −QP . Hence,

OiPi =
r2
i

ri −QP
.

We want to see what happens to QPi as i→∞.

QPi = OiPi −OiQ

= OiPi − ri

=
r2
i

ri −QP
− ri

=
riQP

ri −QP

=
QP

1− QP
ri

.
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So as i increases, so does ri, and QPi approaches QP . Hence, Pi approaches
P ′.

Problem Set ??

1. Construct the inverse of a point P inside the circle of inversion C, and
prove that the construction is correct.

2. An alternative construction of the image of P under inversion can be
based on the fact that in Figure ??, h2 = a1b1 (see Theorem 4.10 on
page 182 of the text). If P is in the interior of the circle, find its inverse
under inversion by first finding its image P ∗ under a half turn in O,
and then finding the point Q such that OP ∗ ·OQ = r2. Complete and
describe this approach.

3. Inversion on the Complex Plane. Another way of viewing inver-
sions is by defining a function on the complex plane.

(a) Show that the mapping F (z) = 1
z

satisfies the equation

|z| · |z′| = 1,

where z′ = F (z) is the image of z under F .

(b) Show that there exists a point z ∈ C such that z′ = F (z) is not
on the ray from the origin to z.

(c) Notice that the previous part shows that F (z) is not an invesion
map since z and z′ do not lie on the same ray emanating from the
origin. We can fix this by defining

z′ = F̄ (z) =
1

z̄

as our inversion mapping. Show that z and z′ lie on the same ray
emanating from the origin and that F̄ still satisfies the equation
|z| · |z′| = 1. Thus, F̄ is inversion in a circle of radius 1 centered
at the origin.

(d) Show that inversion in a circle of radius r centered at the origin
of the complex plane can be written as Dr ◦ F̄ ◦ D−1

r (z), where
Dr(z) = rz is dilatation by a factor of r.
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(e) Use translations and the previous exercise to write the equation
for inversion in a circle of radius r centered at z0 = a0 + b0i.

7



Chapter 1

Properties of Inversions

Now that we know what happens to points under an inversion in a circle, it is
of interest to know what happens to basic geometric objects under inversions.
This will turn out to be helpful in using inversions to solve problems in
geometry.

First, let us consider the image of lines under an inversion.

Theorem 1.1. The image of a line through the center of the inversion is
itself.

Proof. Let O be the center of the inversion, and l a line through O. Let P
be a point on l and P ′ the image of P under the inversion. Then, P ′ is on
the ray OP , so P ′ is also on l. Thus, every point on l maps to a point on
l. Moreover, P ′ maps to P under the inversion, so every point on l is in the
image of l. Hence, it must be that the image of a line through the center is
itself.

What about a line not through the center of the inversion? Consider a
line l that intersects the circle of inversion but does not pass through its
center O (see Figure ??). Let’s see what happens by constructing the inverse
of a few points on the line. First, take the perpendicular to l through O,
and let P be the point of intersection of the perpendicular and l. Construct
P ′ using the construction outlined previously. Observe that the image of a
point on l farther and farther from O is closer and closer to O. This suggests
that the image of l cannot be a line.

To figure out exactly what the image of l looks like, take any other point
Q on l. Construct Q′ as in Figure ??. By definition of the inversion map, we
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know that

OP ·OP ′ = r2

OQ ·OQ′ = r2

where r is the radius of the circle of inversion. Hence, OP ·OP ′ = OQ ·OQ′,
or equivalently,

OP

OQ
=
OQ′

OP ′
.

Since 4OPQ and 4OQ′P ′ have a common angle and the ratio of the two
adjacent sides are the same, the two triangles are similar. By construction,
∠OPQ is a right angle, so ∠OQ′P ′ is also a right angle.

l

Q'

P'PO

Q

Figure 1.1: The image of the point P on the line closest to O and the image of any other point Q.

Thus, ∠OQ′P ′ is inscribed in a circle with OP ′ as diameter so that Q′

must lie on this circle. As a consequence, the image of l is contained in a
circle with diameter OP ′. By reversing the construction, every point on the
circle has a point on l as its preimage, so the image of l is in fact the entire
circle with OP ′ as its radius. The same argument holds even if l does not
intersect the circle of inversion. Conversely, it can be shown that the image
of a circle through O is a line by reversing the above construction. We have
proved the following theorem:

Theorem 1.2. Let C be a circle with center O. The image under inversion
in C of a line that does not pass through O is a circle through O. Conversely,
the image of a circle that passes through O is a line that does not pass through
O.
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The above theorem tells us that circles through O map to lines under
inversion in a circle centered at O. It is natural to wonder what happens to
circles not through O when they are inverted. If our inversion is an inversion
in the circle C, we already know that points of C are their own inverses, so
C is fixed under the inversion. That is, the circle C maps to a circle (namely,
the circle C). If C0 is a circle with radius r0 that is concentric with C —
that is C0 has O as its center — then each point of C0 is equidistant from O,
so their images under inversion will also be equidistant from O. The image
of C0 is a circle with radius r2

r0
since if P is a point on C0, then

OP ·OP ′ = r2

⇒ r0 ·OP ′ = r2

⇒ OP ′ =
r2

r0

.

In these special cases, we have seen that circles not through O map to circles.
Surprisingly, this fact is true for all circles that do not pass through O, as
we shall see in the next theorem.

Theorem 1.3. The image under inversion of a circle not through the center
of the inversion is itself a circle.

Investigation: Let C be the circle of inversion with center O and C1 be a
circle not through O. Let O1 be the center of C1 If we take the point P on
C1 closest to O and the point R on C1 farthest from O, the segment PR is a
diameter of C1. Furthermore, under the inversion Ic, P will map to a point
P ′ in the image of C1 that is farthest from O and R will map to a point R′

in the image of C1 that is closest to O. So we can expect that P ′R′ will also
be a diameter of the image circle.

Proof. There are three cases, when C1 is inside C, when C1 intersects C, and
when C1 lies outside of C. We will prove the first case, and as a consequence,
the third case. Take the ray OO1, and label the intersections of the ray and
C1 as P and R. Then, if P ′ is the inverse of P and R′ is the inverse of R, both
P ′, R′ lie on the ray OO1. Let Q be another point on C1, and take Q′ to be
the image of Q under inversion in C. We know that ∠PQR is a right angle
because it is inscribed in a semicircle. If we can show that P ′Q′R′ is also a
right angle, then ∠P ′Q′R′ is inscribed in a circle with P ′R′ as a diameter, so
Q′ lies on a circle with diameter P ′R′.
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C
1

C

Q

R' P'RPO O
1

Q'

Figure 1.2: A circle mapping to a circle under inversion in C.

By definition of inversion in a circle, OP ·OP ′ = OQ·OQ′ = OR·OR′ = r2,
where r is the radius of C. Thus,

OP

OQ
=
OQ′

OP ′

OR

OQ
=
OQ′

OR′
.

Since 4OPQ and 4OQ′P ′ share the angle ∠POQ and the ratios of the
adjacent sides are equal, they are similar. Likewise, 4ORQ and 4OQ′R′
are similar.

Therefore, ∠OPQ = ∠OQ′P ′. But ∠OPQ is an exterior angle, so it is the
sum of the two opposite interior angles. Thus, ∠OPQ = ∠PRQ + ∠PQR.
We also know that ∠ORQ = ∠OQ′R′ since 4OQR and 4OR′Q′ are similar.
Hence,

∠OPQ = ∠OQ′P ′

∠PRQ+ ∠PQR = ∠OQ′R′ + ∠P ′Q′R′

∠ORQ+ ∠PQR = ∠ORQ+ ∠P ′Q′R′

∠PQR = ∠P ′Q′R′.

Angle ∠PQR is a right angle, so it must be that ∠P ′Q′R′ is also a right
angle.

So far, we have shown that the image of every point on C1 is a point
on the circle with diameter R′P ′. To show that image of C1 is the entire
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circle with diameter R′P ′, we need only to show that the preimage of every
point S on th e circle with diameter R′P ′ is a point on C1. For that purpose,
consider I−1

C (s). Because I−1
C = IC , I−1

C (s) = IC(s) = w. It suffices to show
that if ∠R′SP ′ is a right angle, then so is ∠PWR. This can be shown in a
way similar to what was done for ∠PQR and ∠P ′Q′R′.

Since C1 is inside C, the image of every point of C1 lies outside of C.
So the image of a circle inside C that does not pass through O is a circle
outside of C. Conversely, the image of a circle outside of C is a circle inside
C that does not pass through O. The proof for a circle not through O that
intersects C is similar.

So far, we have seen that under inversion, lines map to lines or circles
and circles map to circles or lines, with the result depending on whether the
original object passes through the center of the inversion. Clearly, inversion
cannot be an isometry since point inside the circle of inversion will become
spread out over the rest of the plane when inverted. The theorems we have
seen so far also show that inversion is not a simple dilatation because lines
can be inverted into circles and vice-versa.

The next best thing we can hope for is that angles are preserved by
inversion. Since we know that straight lines do not necessarily invert to
straight lines, we will have to clarify what we mean by an angle between two
curves. For two curves that intersect at a point P , the angle δ between them
at P is the angle between their tangent lines, as in Figure ??. Since there are
two such angles which are supplementary, we will always choose 0 ≤ δ ≤ π

2
.

The next theorem states that angles are, in fact, preserved by inversion.

m

k

δ

β

α

P

Figure 1.3: The angle between curves α, β is the angle between their tangents k,m at the point of
intersection.
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Theorem 1.4. The magnitude of the angle between two intersecting curves
is not changed by an inversion.

Remark: Notice that there are two angles between the two curves α and β.
If one of the angles is δ, the other is 180o − δ, so we can always choose the
angle δ to be an acute (or right) angle.

Proof. Let C be a circle with O as its center. Take two curves, α and β,
which intersect at a point P . Let α′, β′ be the images of α, β, respectively,
under inversion in C, with P ′ the inverse of P . Take a line through O that
intersects both α and β, and denote the points of intersection as M and N ,
respectively. Let M ′ be the inverse of M and N ′ be the inverse of N under
inversion in C. Note that M ′, N ′ also lie on the line OM .

β'

β

α'

α

NM M'N'O

P

P'

Figure 1.4: Two curves, α and β and their images under inversion about O.

We have shown earlier that4OPM and4OM ′P ′ are similar. Therefore,
∠OMP = ∠OP ′M ′. Similarly, 4ONP and 4ON ′P ′ are similar, so that
∠ONP = ∠OP ′N ′. Since ∠OMP is an exterior angle in 4OMP , it is the
sum of the two interior angles ∠MPN and ∠ONP . Consequently,

∠MPN = (∠MPN + ∠ONP )− ∠ONP

= ∠OMP − ∠ONP

= ∠OP ′M ′ − ∠OP ′N ′

= ∠M ′P ′N ′.

As we let the line OM approach the line OP , M and N will tend to P , and
M ′ and N ′ will tend to P ′. In addition, the secants PM and PN will limit
to the tangents of α and β, respectively. Likewise, P ′M ′ and P ′N ′ will limit
to the tangents of α′ and β′, respectively. The equality of the angle between
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the secants holds as we approach this limit, so that the angles between the
tangent lines are also equal.

Notice that although the magnitude of the angle is preserved, the di-
rection of the angle is reversed. That is to say, inversion is an orientation-
reversing transformation. A transformation that preserves angles is called
a conformal transformation. It is customary to differentiate between such
transformations that are orientation-preserving and those that are orientation-
reversing by calling the latter an anti-conformal transformation.

As an interesting corollary of this result, consider two circles C and C1

such that they intersect at P and Q at right angles, as in Figure ??. Such
circles are called orthogonal. Assume that C1 does not go through the center
of C. What is the image of C1 under inversion in C? By Theorem ??, C1

maps to some circle C ′1. Since points on C are fixed under inversion, C ′1 also
intersects C at P and Q. Moreover, angles are preserved, so C ′1 intersects C
at right angles.

C
1

C
P

Q

O

Figure 1.5: Two circles intersect so that the angles formed are right angles.

We claim that C1 = C ′1. This can be proved by showing that there is
a unique circle that intersects C perpendicularly at P and Q. Let C ′ be
a circle orthogonal to C through P and Q. Notice that the tangent to C
at P is perpendicular to both line OP and to the line tangent to C ′ at P .
Therefore, line OP is the same line as the tangent to C ′ at P . Similarly, OQ
is tangent to C ′ at Q. Therefore, if l is the perpendicular to OP through
P and k is the perpendicular to OQ through Q, then the center of C ′ is at
the intersection O′ of k and l, which is unique. There is a unique circle with
center O′ passing through P , which proves our claim.

Conversely, suppose C1 is a circle not through O such that IC(C1) =
C1. Consider the two supplementary angles δ1 and δ2 formed at a point of
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C
1

C

R δ2

δ1

P

Q

O

R'

Figure 1.6: Two angles α and β are formed at the intersection of two circles.

intersection of C and C1, as shown in Figure??. To find the image of δ1 under
IC , take a point R on C1 inside C. As R approaches P , the angle formed
by line RP and the line tangent to C at P approaches δ1. If we follow the
image R′ = IC(R), then the angle formed by line R′P and the line tangent
to C at P approaches δ2. Thus, the image of δ1 under inversion is δ2. Since
inversion preserves the size of angles, δ1 = δ2. So it must be that δ1 and δ2

are right angles. Hence, C and C1 are orthogonal.
We have proved the following:

Theorem 1.5. Let C be a circle with center O and C1 a circle not through
O. Then, the image of C1 under inversion in C is itself if and only if C1 is
orthogonal to C.

Problem Set ??

1. Prove that the distance between two points is not preserved by inver-
sion.

2. Suppose an equilateral triangle is inscribed inside a circle C. What is
the image of the triangle under inversion in C?

3. Prove that the image of a line that does not intersect the circle of
inversion is a circle through O.

4. Prove that the image of a circle not through O that intersects the circle
of inversion is itself a circle not through O that intersects the circle of
inversion.
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5. Let C be a circle with center O and C1 a circle that does not intersect
O. The image under inversion in C of C1 is a circle C ′1. Show that the
inverse of the center of C1 is not necessarily the center of C ′1.

6. Let C be a circle with center O. Let P ′, Q′ be the images of points P,Q
under inversion in C. Show that 4OPQ is similar to 4OQ′P ′.

7. If A,B,C,D are points in the plane, the cross ratio is defined as

AC

AD

/
BC

BD
.

Show that the cross ratio is invariant under inversion in a circle whose
center is not any of the four pointsA,B,C, orD. That is, ifA′, B′, C ′, D′

are the respective images of A,B,C,D under inversion, that

AC

AD

/
BC

BD
=
A′C ′

A′D′

/
B′C ′

B′D′
.

8. Let P ′ be the image of P under IC . Prove that any circle through P
and P ′ is orthogonal to C.
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Chapter 2

Applications of Inversions

We have seen that the key properties of inversions are that circles map to
either circles and lines and that inversion preserves the size of angles. Thus,
inversions will prove to be most useful whenever we are dealing with circles.

Inversion in a circle provides another way of looking at geometric prob-
lems, sometimes making some problems much easier to solve. For example,
consider four circles C1, C2, C3, and C4 such that each pair of is internally
tangent at a single point P . Let C be any circle that passes through P , as
in Figure ??.

CC
4

C
3

C
2

C
1

P

Figure 2.1: Four circles are internally tangent at P , with a fifth circle passing through P .

From the fact that the four circles are internally tangent, it follows that
the tangents at P to each of the four circles is the same line. Thus, the
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angle between the circle C and each of the four circles is the same. When
we invert all the circles in a circle centered at P , we get five lines. Since
C1, C2, C3, C4 only intersect at P , their images under inversion only intersect
at infinity. Thus, the four lines C ′1, C

′
2, C

′
3, C

′
4 corresponding to the images of

C1, C2, C3, and C4, respectively, form four parallel lines in the plane. Because
C intersected each of the other four circles, its image C ′, which is a line, will
also intersect the four lines C ′1, C

′
2, C

′
3, and C ′4. Thus, any problem about the

circles is transformed into a problem about parallel lines cut by a transversal.
If, for instance, we wanted to know the relations between the angles formed
by C and each of the Ci at the intersection not at P , the above shows that
the four angles have equal measure.

The Shoemaker’s Knife

Consider three semicircles that are mutually tangent at points on a line k,
as in Figure ??. Inscribe a chain of circles C1, C2, ·, Cn as illustrated. This is
called the shoemaker’s knife. We would like to show that the center of the
nth circle, Cn is at a distance ndn from the line k, where dn is the diameter
of Cn.

C
2

C
1

C
0

k

Figure 2.2: The shoemaker’s knife.

A clever inversion makes this easy to show. We will demonstrate the
proof for C2. Label the small semicircle on the left A and the large semicircle
B (see Figure ??. Let O be the point at which they are tangent. Let C be
a circle with center O that is orthogonal to C2. Apply the inversion IC . The
result is shown in Figure ??.

Since C2 is orthogonal to C, the image of C2 under inversion is itself.
Notice that A and B are circles through the center of inversion, so their
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C'
0

C'
1

C

C
2

C
1A

C
0

B

k

B'
A'

O

Figure 2.3: Inversion of the shoemaker’s knife.

images are lines. By the proof of Theorem ??, we know that the image line
is parallel to the tangent of the circle at O. So A′ and B′, the images of
A and B under inversion, are lines perpendicular to k. Moreover, since A
and B were tangent to C2, A′ and B′ are tangent to C2 as well. Thus, the
diameter of C2 is the distance between A′ and B′.

Now, let’s consider C ′1, the image of C1. In the preimage, C1 was also
tangent to A and B, so the image C ′1 is tangent to A′ and B′ since tangency
is preserved as a consequence of angles being preserved. Hence, the diameter
of C ′1 is the distance between A′ and B′. Moreover, C1 was tangent to C2,
so C ′1 is also tangent to C2. Similarly, C ′0, the image of C0 under inversion,
is tangent to A′, B′, and C ′1.

Thus, the result of the inversion is a sequence of circles all congruent to
C2, with the center of C ′0 on k. Hence, the distance from the center of C2 to
k is 2dn. The proof for the nth circle proceeds similarly.

Apollonius’ Problem

Inversions in circles can also be helpful in certain geometric constructions.
One such example is Apollonius’ problem: given three circles, construct a
circle tangent to all three circles. In general, the three circles may or may
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not intersect, and they may have different radii. In some cases, the problem is
impossible: for example, when the circles are concentric with different radii.
When a solution does exists, there are generally up to eight different circles
that are tangent to all three of the givern circles. The constructed circle
may be externally tangent to all three circles, internally tangent to one circle
and externally tangent to the other two, and so on. We will demonstrate the
construction for the circle that is externally tangent to three non-intersecting
circles.

Figure 2.4: The original circles are in green, and the enlarged circles in orange.

Suppose we are given three non-intersecting circles. We can increase the
radii of all three circles by a fixed amount, δ, so that the two closest circles
are tangent, as in Figure ??. Now, if we find a circle that is tangent to all
three of the enlarged circles, we can increase the radius of that circle by δ,
with the resulting circle being tangent to the three original circles.

Thus, we will simplify the problem to the case of three circles such that
two are tangent at a point O. We apply an inversion with O as the center, as
in Figure ??. For simplicity, we will take an inversion that leaves the third
circle invariant. In other words, let the circle of inversion be a circle with
center O that intersects the third circle orthogonally. This is easy to do by
finding the two lines through O that are tangent to the third circle. The
circle of inversion passes through both of these points.

The result of the inversion is the third circle (which maps to itself) and
two parallel lines which are the images of the two circles through O. Since
circles not through O map to circles, we need to find a circle C tangent to the
parallel lines and the third circle. Then, the preimage of C will be a circle
tangent to the three orange circles. The center of C must be equidistant from
the two parallel lines, so it lies on the line l that is exactly halfway between
C ′1 and C ′2. Also, the radius of C is half the distance d between the lines.
Thus if the radius of the third circle is r, the center of C is at a distance
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r+ d
2

from the center of the third circle. There are two such points. We will
take the point that is farther from O to be the center of C.

C
2

C
1

C
3

C

l

C'
1

C'
2

O

Figure 2.5: The result of inversion about O in the circle marked with dashed lines.

To find the preimage of C, take any three points on C and construct their
inverses under the inversion. Then, construct the circle through these three
points. The resulting circle is tangent to our three orange circles.

Peaucellier’s Linkage

M

P

R

Q

SA

Figure 2.6: Peaucellier’s linkage.

Another application of inversions is a solution to a problem that was of
great interest in the nineteenth century [?]. At the time, it was thought that
there was no way to construct a mechanical device that could take rotational
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motion and convert it into linear motion. In 1864, a French engineer and
captain in the French army by the name of Charles-Nicolas Peaucellier used
properties of inversion in a circle to show that such a device was indeed
possible.

Peaucellier’s linkage consists of six bars, as shown in Figure ??. The four
bars PR, PS,QR,QS are of equal length, and AP and AQ are also of equal
length. The bars are free to pivot at each of the points A,P,Q,R, S, and
point A is fixed so that it cannot move.

Then, if M is the center of PSQR, we have

AR · AS = (AM −MR)(AM +MS)

= (AM −MR)(AM +MR)

= AM2 −MR2

= (AP 2 − PM2)− (PR2 − PM2)

= AP 2 − PR2.

M

P

R

Q

SA

B

Figure 2.7: The path of R is a circle and the path of S is its image under inversion, a straight line.

Because the lengths AP and PR are fixed, S is the inverse of R in an
inversion of a circle of radius

√
AP 2 − PR2 through A. We know that the

inverse of a circle through the center of inversion is a straight line. Thus,
if we can make R travel in a circle that also passes through A, then S will
travel in a straight line. This can easily be accomplished by adding a seventh
bar BR and fixing the position of B such that AB = BR (Figure ??). Then,
R rotates in a cicle that passes through A, so S will travel in a straight line.
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Problem Set ??

1. Given a circle C centered at O and two points A,B outside of C, prove
that there exists a circle through A,B and orthogonal to C.

2. In the construction of Apollonius’ problem, there were two possibilities
for the center of the circle C. What would have happened if we chose
the center of C to be the point closer to O? Why did we choose the
point farther from O?

3. Steiner Chains

(a) Let C1 and C2 be two circles with centers O1 and O2, respectively.
Then, any circle C orthogonal to both C1 and C2 intersects the
line O1O2 at two points (see 25.1 in [?] for an analytic proof).

C

C
2C

1

Q
P

O
1

O
2

Use this fact to show that given two non-intersecting circles, there
exists an inversion such that the image of the two circles is two
concentric circles.

(b) Let C1 be a circle lying within the interior of a second circle C2.
Suppose that there exists a chain of circles such that each circle
is tangent to both C1 and C2, and such that adjacent circles are
tangent, as shown below.
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C
2

This is called a Steiner chain, named after the discoverer of the
following property: if one such chain exists, then no matter where
we start the first circle, we will end up with a Steiner chain. Prove
this property.

4. The figure below suggest an alternative method for solving Apollonius’
problem. Describe it.

C
2C

1

l

A
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Chapter 3

Stereographic Projection and
the Riemann Sphere

We have previously remarked that in a sense, the inverse of the center of an
inversion is a “point at infinity.” Since as a point P gets closer to the center,
it gets sent to a point farther from the circle of inversion, we can think of the
center as being sent to a point that is very, very far away. We will attempt
to give this intuitive idea a more rigorous treatment.

Stereographic projection is a way to map points on a sphere to the plane.
In our particular case, we will find it convenient to let the sphere be a sphere
with unit radius, and the plane of projection to be the complex plane: the
set of all points (a, b) corresponding to the complex number a+ bi. We begin
by taking the sphere and placing it “on top” of the complex plane so that
the plane is tangent to the sphere at O, where O is the origin of the complex
plane and the south pole of the sphere.

For each point P on the sphere, we construct the straight line l that
passes through P and the north pole N of the sphere, as in Figure ??. The
point P ′ at which l intersects the complex plane is the image of P under
stereographic position. Notice that the image of the south pole is the point
O of the complex plane, and the image of a point near the north pole is
very far away from the origin. Since the mapping is one-to-one, there is an
inverse mapping to stereographic projection. The inverse map takes complex
numbers and maps them onto the sphere. We will write the stereographic
projection as π, so that π(P ) = P ′.

What happens to the north pole, N? Stereographic projection is not de-
fined on the point N , since there is no unique line through N . As remarked
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P

N
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O

Figure 3.1: Stereographic projection of P to a point P ′.

in the previous paragraph, as points get closer and closer to the north pole,
their stereographic projections onto the plane get farther and farther away
from where the sphere touches the plane. We make N on the sphere cor-
respond to the point ∞ that we adjoint to the plane. In other words, the
sphere provides a geometric representation of the extended plane, with the
north pole corresponding to the point at infinity.

In general, stereographic projection does not have to be a projection onto
the plane tangent to the sphere at the south pole. Often, the plane is taken
to be the plane through the equator of the sphere. When the sphere is
associated to the complex plane by stereographic projection, the sphere is
called the Riemann sphere.

Let’s see what happens to a basic geometric object on the sphere under
stereographic projection. When we studied the properties of inversion in
a circle, we first looked at the image of lines. On a sphere, there are no
straight lines. If two people met at a designated spot on the Earth and
began walking in opposite directions, they will eventually meet each other
on the other side of the Earth. Unlike the situation on a plane, they cannot
keep walking farther and farther away from each other in a line indefinitely.
Thus, on a sphere, circles play a similar role to that of lines on a flat plane,
so we will concentrate our efforts on seeing what happens to circles under
stereographic projection. We will accomplish this by looking at two cases:
for circles through N and circle not through N .

First, let’s see what happens to circles through N under stereographic
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projection. Let C be a circle on the sphere through N . Then, C lies on
some plane L, which cuts through the sphere (see Figure ??). In particular,
this plane cannot be tangent to the sphere at N , so it is not parallel to the
complex plane. Thus, L intersects the complex plane. Moreover, for every
point P on C, the line NP lies on the plane L since both N and P are on
L. Consequently, the stereographic projection P ′ of P must also be on L. It
follows that P ′ is in the intersection of L and the complex plane. But the
intersection of two planes is a line, so the image of C is some subset of a line
in the complex plane.

C

L

P

N

P'

O

Figure 3.2: Stereographic projection of a circle C through N .

Moreover, the only line through N on L that does not intersect the com-
plex plane is the line tangent to C at N . Hence, for every point P ′ on the
line of intersection between the complex plane and L, there exists a point P
on the circle C such that NP intersects P ′. Every point on the line has a
preimage under stereographic projection, so the image of C is precisely the
line of intersection of L and the complex plane. We have proved the following
theorem.

Theorem 3.1. The image under stereographic projection of a circle through
the north pole is a line.
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What about circles on the sphere not through N? Perhaps it is simplest
to see what happens to stereographic projection of a great circle. If we take
Q to be the center of the Riemann sphere and P a point on the equator, then
4NQP forms an isosceles right triangle, where ∠NQP is a right angle. If
we extend the segment NP to the P ′ = π(P ) as in Figure ??, then OP ′||QP ,
so that 4NQP and 4NOP ′ are similar.

Q

O P'

N

P

Figure 3.3: OP ′||QP , so that 4NQP and 4NOP ′ are similar.

Consequently,4NOP ′ is also right isosceles, and OP ′ = NO. This is true
for any point P ′ in the image of the equator under stereographic projection,
so the image is contained in the circle of points that have distance NO from
the origin O. By reversing the argument, every point in this circle has a
point on the equator that maps to it, so the image of the equator is a circle.

A similar argument can be used to show that the image of any circle that
is parallel to the plane is a circle. In the following theorem, we will see that
this holds even if the circle is not parallel to the plane.

Theorem 3.2. The image under stereographic projection of a circle on the
sphere not through N is a circle in the plane.

Before proving the theorem, we will need a few facts about geometry in
three dimensions. Let C be a circle and V a point that is not in the plane
of the circle. For each point on the circle, draw a line through the point and
V . The set of all points that lie on such lines is called a circular cone with
vertex V . If the line from V to the center of C is perpendicular to the plane
of the circle, then the cone is a right circular cone. Otherwise, it is an oblique
circular cone. If instead of a circle, we take the set of all points on lines from
V to an ellipse, then we form an elliptical cone. The line through the center
of the ellipse (or the circle) and V is called the axis of the cone.

One important fact about cones is that the intersection of any plane with
a right or oblique circular cone is a conic section — a circle, ellipse, hyperbola,
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or a parabola (a beautiful illustration and geometrical proofs can be found
in [?]). In particular, if a plane intersects a cone in all of the lines through
its vertex but does not intersect the vertex itself, then the intersection forms
an ellipse.

Let L be a plane through the axis of an elliptical cone. The other fact we
will use is that if a plane perpendicular to L intersects the cone at an angle
of δ with respect to that axis such that the intersection forms a circle, then
the plane perpendicular to L that intersects the cone at an angle of 180o− δ
with respect to the axis also intersects the cone in a circle (see Figure ??).

180-δ
δδ

Figure 3.4: Planes cutting a cone at an angle of δ and 180o−δ intersect the cone in identical conic sections.

Proof of Theorem ??. Let C be a circle not through N . Notice that we can
make a circular cone through circle C with N as its vertex. Let L be a
plane through the vertical axis of the sphere such that L divides C into two
semicircles. We will look at the intersection of the sphere with L, shown in
Figure ??.

M

S

R

O

P

Q

N

U

Figure 3.5: A cross-section of the sphere.

In the figure, PQ is a diameter of C, and R is the midpoint of the diam-
eter. Then, the line RN bisects ∠PNQ. Moreover, any plane through PQ
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that is perpendicular to L intersects the circular cone in an ellipse, so the
cone is an elliptical cone with line RN as its axis.

Thus, C is the intersection of the cone with a plane through PQ which
is perpendicular to L, and its projection C ′ = π(C) is the intersection of the
same elliptical cone with a plane through OS, also perpendicular to L. So
if we can show that the two angles ∠NRQ and ∠NSO satisfy m(∠NSO) =
180o −m(∠NRQ), we would have that C ′ is also a circle.

Let M be the point at which RN intersects the circle in Figure ??, and U
the point at which the tangent to the circle at M intersects OS. Then, both
lines MU and OU are tangent to the circle, so m(∠OMU) = m(∠MOU).
But ∠NRQ = ∠NMU and ∠NMU = ∠NMO + ∠OMU . Since ∠NMO
is inscribed in a semicircle, m(∠NMO) = 90o. Thus, m(∠OMS) = 90o.
Consequently, we have

m(∠NSO) = 180o − (m(∠OMS) +m(∠MOU))

= 180o − (m(∠NMO) +m(∠OMU)

= 180o −m(∠NMU)

= 180o −m(∠NRQ)

as desired. Therefore, C ′ is a circle.

So far, we have seen that circles through N map to lines under stereo-
graphic projection and that circles not through N map to circles. If instead,
we take lines and circles in the plane and map them to the sphere by the
inverse of stereographic projection, they will map to circles through N and
circles not through N , respectively. Thus, both lines and planes in the plane
correspond to circles on the Riemann sphere, and we can think of inversions
on the extended plane as simply maps that take circles to circles on the
Riemann sphere.

However, to make the analogy complete, we must first check that angles
are preserved by stereographic projection. Notice that if two curves on the
sphere intersect at N , then their projections intersect at the point at infinity
in the extended plane, so it is tricky to define an angle of intersection between
the two curves. In order to avoid this confusion, we will restrict ourselves to
the angle between two curves intersecting at points other than N .

Theorem 3.3. The angle between two curves intersecting at a point other
than N is preserved by stereographic projection.
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Proof. Let α and β be curves on the sphere that intersect at a point P .
Denote the line tangent to α at P by α′ and the line tangent to β at P by
β′. Let K be the plane through the line α′ and the point N , and let L be
the plane through the line β′ and the point N .

The intersection of the plane K with the sphere is a circle C1 through
N . Similarly, the intersection of L with the sphere is a circle C2 through N .
Take points R on C1 and S on C2. Notice that as R, S approach P , ∠RPS
approaches the angle between α′ and β′. Thus, to find the image of the angle
between α and β at P , we need only to find the angle between the images of
C1 and C2 under stereographic projection (notice that these images are lines
that intersect at P ′ = π(P )).

The image of C1 under stereographic projection is precisely the intersec-
tion of the complex plane with K, and the image of C2 is the intersection of
the complex plane with L. Call the angle between these two lines δ. Then,
take the plane T tangent to the sphere at N . Notice that this plane is parallel
to the complex plane. Thus, if we look at the angle δ′ between the line of
intersection of K with T and the line of intersection of L with T , we have
δ = δ′.

Moreover, since C1 and C2 intersect at P and at N . It is not hard to see
that if two circles intersect in two points such that the angle of intersection at
one of the points is γ, the angle of intersection at the other intersection point
is also γ. This is analogous to the situation for circles in two dimensions, and
the proof follows by reflecting in a plane through the centers of both circles
that takes one point of intersection to the other.

Therefore, the angle formed at N by the intersection of C1 and C2 is the
same as the angle they form at P . But by construction, this angle is the
angle between α′ and β′. Consequently, δ, the image of the angle between α
and β at P under stereographic projection, is equal to the angle between α′

and β′ at P ′.

Since stereographic projection and inversions preserve angles, we can
think of inversions as angle-preserving maps on the Riemann sphere. When
we want to apply an inversion, we first use stereographic projection to map to
the complex plane, apply an inversion, then use the inverse of stereographic
projection to return to the Riemann sphere. Notice that circles on the sphere
map to circles and lines on the plane, and inversions map circles and lines
to other circles and lines. Then, when we return to the Riemann sphere, the
circles and lines on the plane return to being circles on the sphere.
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Thus, when in the context of the Riemann sphere, we can think of a
line in the plane as a circle with infinitely large radius so that it closes
up only at the point at infinity. An inversion is a transformation of the
Riemann sphere that takes circles to circles while also preserving the size
of angles. In conjunction with the other familiar transformations of the
plane — translation, rotation, reflection, and dilatation — inversions form a
group of transformations that map circles to circles and preserve angles. This
is called the Möbius transformation group, named after August Ferdinand
Möbius (1790-1868), a German mathematician and astronomer who used
the group to study projective geometry. A colorful exploration of Möbius
tranformations and symmetries can be found in [?].

Problem Set ??

1. Suppose x is the real axis of the complex plane, y the imaginary axis,
and z an axis perpendicular to the complex plane. Then, the equation
of the unit sphere tangent to the complex plane at (0, 0, 0) is x2 +
y2 + (z − 1)2 = 1. The north pole of the sphere is located at (0, 0, 2).
Let (x, y, 1 +

√
1− x2 − y2) be the coordinates of a point P in the

northern hemisphere, for x2 + y2 ≤ 1. Compute the coordinates of the
stereographic projection of P .

2. Find the coordinates of the stereographic projection of an arbitrary
point in the southern hemisphere.

3. The equation of an arbitrary plane is ax+by+cz+d = 0, for constants
a, b, c, d. Any circle on the sphere through N can be written as the
intersection of the sphere x2 + y2 + (z − 1)2 = 1 and a plane described
by the equation ax + by + z − 2 = 0. Prove, using coordinates, that
stereographic projection takes a circle on the sphere through N to a
line on the xy-plane.

4. Prove, using coordinates, that stereographic projection takes a circle
on the sphere not through N to a circle on the xy-plane.
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