Investigating f(n) = f(n-1) + f(n-2) for values that will generate the Lucas Sequence

by

Kimberly Burrell


f(0) = 1 and f(1) = 3


Using this sequence, but changing f(0) and f(1) to f(0) = 1 and f(1) = 3 generates a Lucas Sequence.

Notice that the ratio of adjacent terms remains constant with the Golden Ratio (1.6180339) regardless of the values of f(0) and f(1).

1 3
3 1.33333333333333
4 1.75
7 1.57142857142857
11 1.63636363636364
18 1.61111111111111
29 1.62068965517241
47 1.61702127659574
76 1.61842105263158
123 1.61788617886179
199 1.61809045226131
322 1.61801242236025
521 1.61804222648752
843 1.61803084223013
1364 1.61803519061584
2207 1.6180335296783
3571 1.61803416409969
5778 1.61803392177224
9349 1.61803401433308
15127 1.61803397897799
24476 1.61803399248243
39603 1.61803398732419
64079 1.61803398929446
103682 1.61803398854189
167761 1.61803398882935
271443 1.61803398871955

The same holds true for the limit of the ratio of every second term as seen below. The limit is again 2.6180339, which is the same value found previously for the ratio of every second term with f(0) = 1 and f(1) = 1.

1 4
3 2.33333333333333
4 2.75
7 2.57142857142857
11 2.63636363636364
18 2.61111111111111
29 2.62068965517241
47 2.61702127659574
76 2.61842105263158
123 2.61788617886179
199 2.61809045226131
322 2.61801242236025
521 2.61804222648752
843 2.61803084223013
1364 2.61803519061584
2207 2.6180335296783
3571 2.61803416409969
5778 2.61803392177224
9349 2.61803401433308
15127 2.61803397897799
24476 2.61803399248243
39603 2.61803398732419
64079 2.61803398929446
103682 2.61803398854189
167761 2.61803398882935
271443 2.61803398871955

We will now investigate the limit of the ratio of every third term of the given sequence.

1 7
3 3.66666666666666
4 4.5
7 4.14285714285714
11 4.27272727272727
18 4.22222222222222
29 4.24137931034483
47 4.23404255319149
76 4.23684210526316
123 4.23577235772358
199 4.23618090452261
322 4.2360248447205
521 4.23608445297505
843 4.23606168446026
1364 4.23607038123167
2207 4.23606705935659
3571 4.23606823819938
5778 4.23606784354448
9349 4.23606802866617
15127 4.23606795795597
24476 4.23606798496486
39603 4.23606797464839
64079 4.23606797858893
103682 4.23606797708378
167761 4.23606797765869
271443 4.23606797743909

Once again one can observe that we find the limit is the same as the limit in our previous example (4.236067977).


Another pair of values for f(0) and f(1)


Let's investigate our Fibonnaci Sequence with f(0) = 5 and f(1) = 7.

We begin our investigation by determining the limit of the ratio of adjacent terms.

5 1.4
7 1.71428571428571
12 1.58333333333333
19 1.63157894736842
31 1.61290322580645
50 1.62
81 1.61728395061728
131 1.61832061068702
212 1.61792452830189
343 1.61807580174927
555 1.61801801801802
898 1.61804008908686
1453 1.6180316586373
2351 1.61803487877499
3804 1.61803364879075
6155 1.61803411860276
9959 1.61803393915052
16114 1.61803400769517
26073 1.61803398151344
42187 1.61803399151397
68260 1.61803398769411
110447 1.61803398915317
178707 1.61803398859586
289154 1.61803398880873
467861 1.61803398872742
757015 1.61803398875484

Again, one can observe we have found the limit to be 1.6180339887. This sequence does not prove that this will be the value of this limit for all values of f(0) and f(1), but it does indicate that we are on the right track.

Now, we determine the limit of the ratio of every second term of this sequence with f(0) = 5 and f(1) = 7.

5 2.4
7 2.71428571428571
12 2.58333333333333
19 2.63157894736842
31 2.61290322580645
50 2.62
81 2.61728395061728
131 2.61832061068702
212 2.61792452830189
343 2.61807580174927
555 2.61801801801802
898 2.61804008908686
1453 2.6180316586373
2351 2.61803487877499
3804 2.61803364879075
6155 2.61803411860276
9959 2.61803393915052
16114 2.61803400769517
26073 2.61803398151344
42187 2.61803399151397
68260 2.61803398769411
110447 2.61803398915317
178707 2.61803398859586
289154 2.61803398880873
467861 2.61803398872742
757015 2.61803398875484

2.6180339887 AGAIN! We are building momentum in our investigation even though we have not proven our conjecture that this limit will always be 2.6180339887.

Finally, we find the limit of the ratio of every third term of our sequence.

5 3.8
7 4.42857142857143
12 4.16666666666667
19 4.26315789473684
31 4.22580645161290
50 4.24
81 4.23456790123457
131 4.23664122137405
212 4.23584905660377
343 4.23615160349854
555 4.23603603603604
898 4.23608017817372
1453 4.2360633172746
2351 4.23606975754998
3804 4.23606729758149
6155 4.23606823720552
9959 4.23606787830103
16114 4.23606801539034
26073 4.23606796302689
42187 4.23606798302795
68260 4.23606797538822
110447 4.23606797830634
178707 4.23606797719172
289154 4.23606797761746
467861 4.23606797745484
757015 4.23606797751696

Our limit retains the same value as in our previous two examples. We can conjecture that the value will always be 4.236067977.


Return