ASSIGNMENT 5
Creating and Using GSP Scripts
Presented by Godfried Lawson

The write-up for this assignment is to create a file with links to various GSP scripts I will produce. This write-up will be a library of  GSP scripts.

I will use personal library of GSP scripts as tools for doing constructions. As we have observed students working on   problems in our classes, we have been surprised by the number of times we have seen someone repeat a complete construction.
Using a script, for example, to construct the circumcircle 4 times makes more sense than repeating the construction 4 times from scratch on the same figure.

MAKING A SCRIPT

The simplest way to make a script in GSP 3.0 is to complete a desired construction, select all (either from the menu
or by drawing a box around it), and then going to make script under the Work menu. You may want to annotate the    comment section to a) help identify "given" objects for the script
and b) to indicate whose script it is.

USING A SCRIPT

Each script will have a set of given geometric objects. Open a sketch and select the object in the order
specified in the givens. Then select Play on the script.

Here is a list of scripts that I think would be worth saving and using in your work with GSP

 1. Centroid The CENTROID of a triangle is the common intersection of the three medians. 2. Orthocenter The orthocenter of a triangle is the common intersection of the tree lines containing the altitude. 3. Circumcenter The CIRCUMCENTER (C) of a triangle is the point in the plane equidistant from the three vertices of the triangle. 4. Altitudes and orthocenters This script is designed to find the relations between altitudes and the orthocenters. 5. Incenter The INCENTER (I) of a triangle is the point on the interior of the triangle that is equidistant from the three sides. 6. Pentagon Given center and vertex, construct a regular pentagon. 7. Medial Triangle Triangle formed by connecting the midpoints of the original triangle. 8. Tangent Circles The set of circles tangent to two given circles 9. Pedal triangle Pedal Triangle is a triangle formed by constructing perpendiculars to the sides of the original triangle ABC 10. The medial triangle of a right triangle The medial triangle  formed from a right triangle is a right triangle. 11 Midpoint Triangle Construct a triangle A,B,C and its orthocenter H. Connect the orthocenter to the vertices with the line segment HA, HB, and HC. Construct the midpoints of HA, HB and HC.  Connect the midpoints to form a new triangle (DEF) . The inside triangle is called the midpoint triangle 12. Animation script of medial triangle This is the animation of the medial triangle and the triangle formed from the midpoints of HA, HB, and HC. 13. Regular hexagon Given points A and B, construct a regular hexagon with side lengths AB. 14. Triangle Centers (H, G, C, and I) This is the script of the centoid (G) , the circumcerter (C), the Incenter (I), and the orthocenter (H) 15. Orthic triangle Take any acute triangle. Construct a triangle connecting the feet of the altitudes. This is called the ORTHIC triangle. 16.  Regular 10-gon Given center and vertex, construct a regular 10-gon. 17. Sublime Triangle Given points A,B, construct a Sublime triangle. 18. Tangents to two circles Given rim, center and rim, center of two circles, construct all tangents to both circles. 19. Cube Given three points, construct a 2D representation of a cube 20. Golden ratio Divide segment AB at a point G such that AB/AG = AG/GB. i.e. Divide a segment at the Golden Ratio.

Return