EMAT 6680 Assignment 12

Mathematic problems and explorations with spreadsheets.

Melissa Bauers Summer 2002


Generate a Fibonnaci Sequence

 

The Fibonnaci Sequence is the sequence of 1, 1, 2, 3, 5, 8, 13, … It is generated by taking the sum of the two previous terms. The equation is f(n) = f(n-1) + f(n-2).

 

This is a example of a Fibonnaci Square. Each color represents a number in the sequence. In this assignment, we will look at the Fibonnaci Sequence using a spreadsheet.

 

 

n f(n)=f(n-1) + f(n-2)

0

1

1

1

2

2

3

3

4

5

5

8

6

13

7

21

8

34

9

55

10

89

11

144

12

233

13

377

14

610

15

987

16

1597

17

2584

18

4181

19

6765

20

10946

21

17711

22

28657

23

46368

24

75025

25

121393

26

196418

27

317811

28

514229

29

832040

30

1346269

31

2178309

32

3524578

33

5702887

34

9227465

35

14930352

36

24157817

37

39088169

38

63245986

As n increases the f(n) becomes increasingly bigger. Notice the sharp curve of the graph. Now let's look at the ratio of the second term compared to the first.

Now let us examine the ratio of terms.

n f(n)=f(n-1) + f(n-2) Ratio of f(n)/f(n-1) Ratio of f(n)/f(n-2) Ratio of f(n-1)/f(n-2)

0

1

1

1

1

2

2

2

2

1

3

3

1.5

3

2

4

5

1.666666667

2.5

1.5

5

8

1.6

2.66666667

1.666666669

6

13

1.625

2.6

1.6

7

21

1.615384615

2.625

1.625

8

34

1.619047619

2.615384615

1.615384615

9

55

1.617647059

2.619047619

1.619047619

10

89

1.618181818

2.617647059

1.617647059

11

144

1.617977528

2.618181818

1.618181818

12

233

1.618055556

2.617977528

1.617977528

13

377

1.618025751

2.618055556

1.618055556

14

610

1.618037135

2.618025751

1.618025751

15

987

1.618032787

2.618037135

1.618037135

16

1597

1.618034448

2.618032787

1.618032787

17

2584

1.618033813

2.618034448

1.618034448

18

4181

1.618034056

2.618033813

1.618033813

19

6765

1.618033963

2.618034056

1.618034056

20

10946

1.618033999

2.618033963

1.618033963

21

17711

1.618033985

2.618033999

1.618033999

22

28657

1.61803399

2.618033985

1.618033985

23

46368

1.618033988

2.61803399

1.61803399

24

75025

1.618033989

2.618033988

1.618033988

25

121393

1.618033989

2.618033989

1.618033989

 

Notice the ratio of terms in column 3. They come out to be the golden ration. The ratios in columns 4 and 5 follow suit.

 

 

The next series will start out with different values for f(0) and f(1). The Lucas Sequence starts as f(0) = 1 and f(1) =3. Now look at the ratios.

n f(n)=f(n-1) + f(n-2) Ratio of f(n)/f(n-1) Ratio of f(n)/f(n-2) Ratio of f(n-1)/f(n-2)

0

1

1

3

3

2

4

1.333333333

4

3.000000001

3

7

1.75

2.33333333

1.333333331

4

11

1.571428571

2.75

1.75

5

18

1.636363636

2.571428571

1.571428571

6

29

1.611111111

2.636363636

1.636363636

7

47

1.620689655

2.611111111

1.611111111

8

76

1.617021277

2.620689655

1.620689655

9

123

1.618421053

2.617021277

1.617021277

10

199

1.617886179

2.618421053

1.618421053

11

322

1.618090452

2.617886179

1.617886179

12

521

1.618012422

2.618090452

1.618090452

13

843

1.618042226

2.618012422

1.618012422

14

1364

1.618030842

2.618042226

1.618042226

15

2207

1.618035191

2.618030842

1.618030842

16

3571

1.61803353

2.618035191

1.618035191

17

5778

1.618034164

2.61803353

1.61803353

18

9349

1.618033922

2.618034164

1.618034164

19

15127

1.618034014

2.618034014

1.618033979

20

24476

1.618033979

2.618033979

1.618033992

21

39603

1.618033992

2.618033992

1.618033987

22

64079

1.618033987

2.618033987

1.618033989

23

103682

1.618033989

2.618033989

1.618033988

24

167761

1.618033989

2.618033989

1.618033989

25

271443

1.618033989

2.618033989

1.618033989

 

The ratios converge to the golden ratio. This convergence does not require f(n) to start at a certain value.

 


Return to MBauers Home Page