Assignment 12

Investigation 3

Exploring the Fibonacci Sequence

First we will generate a Fibonacci sequence in the first column of our spreadsheet using f(0) = 1, f(1) = 1, and f(n) = f(n-1) + f(n-2)

n Value Fibonnaci Value
0 1
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89
11 144
12 233
13 377
14 610
15 987
16 1597
17 2584
18 4181
19 6765
20 10946

Now if we create a third column with the ratio of each pair of adjacent terms in the Fibonacci sequence.

n Value Fibonnaci Value Ratio
0 1 1
1 1 1
2 2 2
3 3 1.5
4 5 1.66666666666667
5 8 1.6
6 13 1.625
7 21 1.61538461538462
8 34 1.61904761904762
9 55 1.61764705882353
10 89 1.61818181818182
11 144 1.61797752808989
12 233 1.61805555555556
13 377 1.61802575107296
14 610 1.61803713527851
15 987 1.61803278688525
16 1597 1.61803444782168
17 2584 1.61803381340013
18 4181 1.61803405572755
19 6765 1.61803396316671
20 10946 1.6180339985218

It is obvious that the ratios are approaching 1.618 or something close to 1.618. Now lets do the same thing with the ration of every second term.

n Value Fibonnaci Value Adjacent Ratio Second Ratio
0 1 1
1 1 1
2 2 2 2
3 3 1.5 3
4 5 1.66666666666667 2.5
5 8 1.6 2.66666666666667
6 13 1.625 2.6
7 21 1.61538461538462 2.625
8 34 1.61904761904762 2.61538461538462
9 55 1.61764705882353 2.61904761904762
10 89 1.61818181818182 2.61764705882353
11 144 1.61797752808989 2.61818181818182
12 233 1.61805555555556 2.61797752808989
13 377 1.61802575107296 2.61805555555556
14 610 1.61803713527851 2.61802575107296
15 987 1.61803278688525 2.61803713527851
16 1597 1.61803444782168 2.61803278688525
17 2584 1.61803381340013 2.61803444782168
18 4181 1.61803405572755 2.61803381340013
19 6765 1.61803396316671 2.61803405572755
20 10946 1.6180339985218 2.61803396316671
21 17711 1.61803398501736 2.6180339985218
22 28657 1.6180339901756 2.61803398501736
23 46368 1.61803398820532 2.6180339901756
24 75025 1.6180339889579 2.61803398820533
25 121393 1.61803398867044 2.6180339889579

What would happen to our ratios if we used two different values for f(0) and f(1). For example, like the Lucas sequence let f(0)=1 and f(1)=3.

n Value Fibonnaci Value Adjacent Ratio Second Ratio
0 1 0.333333333333333
1 3 3
2 4 1.33333333333333 4
3 7 1.75 2.33333333333333
4 11 1.57142857142857 2.75
5 18 1.63636363636364 2.57142857142857
6 29 1.61111111111111 2.63636363636364
7 47 1.62068965517241 2.61111111111111
8 76 1.61702127659574 2.62068965517241
9 123 1.61842105263158 2.61702127659574
10 199 1.61788617886179 2.61842105263158
11 322 1.61809045226131 2.61788617886179
12 521 1.61801242236025 2.61809045226131
13 843 1.61804222648752 2.61801242236025
14 1364 1.61803084223013 2.61804222648752
15 2207 1.61803519061584 2.61803084223013
16 3571 1.6180335296783 2.61803519061584
17 5778 1.61803416409969 2.6180335296783
18 9349 1.61803392177224 2.61803416409969
19 15127 1.61803401433308 2.61803392177224
20 24476 1.61803397897799 2.61803401433308
21 39603 1.61803399248243 2.61803397897799
22 64079 1.61803398732419 2.61803399248243
23 103682 1.61803398929446 2.61803398732419
24 167761 1.61803398854189 2.61803398929446
25 271443 1.61803398882935 2.61803398854189

We can see that our ratios still approach the same values as the original Fibonacci sequence.


Return to Assignment 12