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Abstract: This report presents technology-enhanced activities designed for secondary mathematics teachers within the context of matrix algebra, transformational geometry, and fractals. It concerns the ways in which a spreadsheet can be used as a tool kit that enables one, through encoding and manipulating matrices, to create fractals with reliance upon the Chaos Game. The authors argue that such use of a spreadsheet can help prospective teachers link properties of matrices and concepts of transformational geometry in a meaningful and representational manner.

One of the central tenets of the current reform movement in mathematics teacher education is the appropriate use of the tools of technology in teaching and learning mathematics at all grade levels. The recently published document Principles and Standards for School Mathematics, by the National Council of Teachers of Mathematics (NCTM), included technology as one of its six Principles. The technology principle is based, in part, on the notion that computer-enabled pedagogy extends the range of problems that students can access and provides, with relative ease, more representational forms than a pencil-and-paper environment (NCTM 2000). 

Indeed, a variety of representational forms relevant to secondary school mathematics instruction can be created through the use of computer graphics, electronic tables, symbolic manipulators, and dynamic geometry. All these types of software have proven to be useful cognitive tools in technology-rich classrooms and have become an important cultural component of the modern educational system. The various technology tools should not be considered in isolation; rather they should be viewed as a tool kit conducive to mediate mathematical action. 
Any technology tool kit is a product of social evolution and cultural development. Thus, it may be helpful to structure the discussion on the mediation (through use of technology tools) of students' mathematical action in contemporary classrooms from the socio-cultural perspective (Wertsch 1991). This theoretical perspective distinguishes three major positions associated with a tool kit approach to mediated action: heterogeneity as genetic hierarchy, heterogeneity despite genetic hierarchy, and non-genetic heterogeneity. The first two positions admit an inherent ranking of available notation systems (electronic tables, graphing tools, etc.) within a learning environment. The third position does not admit the existence of the hierarchy of a cognitive effectiveness among the elements of a tool kit. In this report, we adopt the third position.

More specifically, non-genetic heterogeneity of a mediational tool kit implies that there is no inherent ranking within the manifold of representational formats in human mental functioning. As far as a representation of complex ideas in a computer environment is concerned, this position is in agreement with Kaput’s (1992) claim that each notation system in a technology-rich tool kit reveals more clearly than another some aspects of a mathematical concept and hides some other aspects of the concept. From this position, a tool kit approach to mediated action brings about the abundant property of a representational variety in which the whole exceeds the sum of its parts. This paper will show how a variety of representational formats in the context of transformational geometry and matrix algebra can be examined from the third position. 


The metaphor of a tool kit in the context of technology-enabled mathematics instruction means an array of representational formats that mediate students’ mathematical thinking in a technology-rich environment.  The major claim of a tool kit approach to teaching and learning mathematics in a computer environment is that the variety of qualitatively different representational formats (notation systems) provided by the environment affects students’ acquisition of new concepts in different ways.  While there is basically no inherent ranking among different types of software used in secondary mathematics classroom, the appropriateness of a particular type for a specific classroom depends on the topic being studied. Therefore, the metaphor of a tool kit in the context of a technology-rich mathematics classroom may be associated with the non-genetic heterogeneity position.  

Variety in representational format may seem to require diversity in software, whereas many classrooms lack diverse software tools. However, the non-genetic heterogeneity position appears to be particularly helpful in supporting an alternative idea of using a single computer application - an electronic spreadsheet - as a tool kit (Abramovich & Brantlinger 1998). Indeed, this single computer application is comprised of many tools that have properties of their physically separate analogues. Sliders (manipulative parameters), electronic tables, random numbers generators, graphical and geometric charts, and other tools available in a spreadsheet environment comprise a non-genetically heterogeneous tool kit. As this paper demonstrates, such a tool kit can bridge two traditionally advanced topics – transformational geometry and matrix algebra – using a variety of tools that reveal a uniform cognitive effectiveness over the whole kit.

In what follows, a spreadsheet-enabled approach to understanding matrices as geometric transformations is suggested. This particular approach is motivated by students’ interest in learning about fractals and self-similarity. Peitgen, Jürgens, and Saupe (1992) rely upon the metaphor of a Multiple Reduction Copy Machine (MRCM) and the use of lenses in describing the encoding of fractal images. Here, the focus is upon the matrix representations of lenses and the linear transformations that the lenses, in turn, represent. The authors argue that linear transformations in the Cartesian plane can be easily represented via their effect on a unit square, and, in turn, these resulting lenses are most efficiently represented as matrices. As such, the lenses used in MRCM constitute a fundamental link between two-by-two matrices and linear transformations of the plane. Using a spreadsheet-based tool kit of numerical, analytical, graphical and geometrical notations, one can develop the conceptual links between transformational geometry and matrix algebra that are needed to fully understand both topics. 

In order to frame the mathematical ideas of this report, we will first establish the formal relationship between the two topics, and then demonstrate how the tool kit described above can aid students in bridging them conceptually. 
Formal Approach
To formally build the link between matrix algebra and transformational geometry, we can construct a two-by-two matrix to represent each linear transformation of the plane. This construction relies upon the treatment of points in the plane as two-dimensional vectors on which the usual addition and scalar 

multiplication are defined. We would like to adopt a definition of linear transformation that is strictly geometric and use it to derive the usual linearity conditions. In particular, we might define a linear transformation as a continuous, one-to-one mapping that takes lines to lines. In the interest of clarity,  we will use the usual, algebraic definition of a linear transformation instead. Still, it is of interest to us that the two definitions are indeed equivalent. 

If the respective images of the points, (x1,y1) and (x2,y2), under linear transformation M, are known to be M[(x1,y1)] and M[(x2,y2)], then 
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[image: image3.wmf]For now, let us put one more restriction on M by insisting that it fixes the origin:

Note that removing this restriction yields an affine transformation - a linear transformation followed by a translation. Thus, throughout this report, we will refer to linear transformations with translations as affine transformations. By using equations (1) and (2), we get the following results:
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Thus, the image of every point (x,y) in the plane is determined by the images of the points (1,0) and (0,1). To illustrate, let M[(1,0)]=(a,c), and let M[(0,1)]=(b,d). Then 
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In other terms, M[(x,y)] can be defined in a matrix form using four parameters: a,b,c and d:
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If we want to allow for translations, we can augment the above matrix by translations e and f, in the x and the y directions, respectively. Finally, we have the following matrix representation of an affine transformation M:
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[image: image8.wmf]We can also represent affine transformation M geometrically by considering the image of the unit square in the plane. Linearity of M will force this image to be a parallelogram, which exemplifies the combination of rotations, reflections, dilations, shearings and translations that M performs on the plane. Figure 1 illustrates an example of an affine transformation that includes a dilation, rotation and translation. The figure also includes labels with the notation mentioned above for matrix representations. While this figure is not part of the tool kit, it indicates a formal relation, through use of notation, between the two representations. An informal (activity-based) approach to this relation is the focus of the first part of the tool kit. 

Figure 1: Geometric representation of an affine transformation.

Activity-Based Approach Using the Tool Kit
As an activity, we suggest that (prospective) high school teachers use the spreadsheet-based tool kit in the following manner. Sheet 1 enables the user to change the six parameters (a, b, c, d, e, f) of the three augmented matrices, each representing an affine transformation of the plane. We can make changes to each real-valued entry in a seemingly continuous manner (in increments of .01) using spreadsheet sliders. Also, the dynamics of such changes is interactively illustrated with spreadsheet graphics, which make it possible to generate a graph of the image of the unit square associated with each matrix (Fig. 2).
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Figure 2: Algebraic and geometric representation of dilation.
[image: image10..pict]The matrix in Figure 2 has entries a, b, c, d, e and f arranged in the conventional manner. We can immediately see the effect of these parameters in the graph of the unit square: the points (1,0) and (0,1) are scaled down to (a,b)=(0.5,0) and (c,d)=(0,0.5), respectively, and the origin is kept fixed at (e,f)=(0,0). Thus, the image of the transformation is the unit square dilated about the origin by one half. This image square illustrates that each point in the plane is scaled by one-half, which we can verify by performing multiplication of the matrix M by an arbitrary vector (x,y). We can use a similar examination to understand the transformation illustrated in Figure 3, except, this time, the origin is not fixed. Note that, according to Figure 3, the points (1,0) and (0,1) are mapped to (a+e,b+f)=(0.5+0.35,0+0.2)=(0.85,0.2) and (c+e,d+f)=(–0.3+0.35,0.5+0.2)=(0.05,0.7), respectively.

Figure 3: Representations of a combination of dilation, shearing and translation.
Next, students can analyze the values of coordinates of points (recall that these are being treated as two-dimensional vectors) under the transformation of matrix M1, M2 or M3 selected randomly at each iteration from the three defined in Sheet 1. The iterations are performed in Sheet 2 by "teaching" the computer to perform matrix multiplication. The formula used to do this is shown in the formula bar of Sheet 2 (Fig. 4). Teachers may find pedagogical value in having students examine this formula. Note, however, that the matrix entries are now listed as rows (rows 4, 5 and 6). The matrix to be used at each iteration is selected randomly as indicated by the numbers in column C, beginning at C10. By tracking the images of the initial point (x0,y0) after each iteration, we can observe that points are, in general, not revisited. In fact, the pattern as a whole appears very chaotic, as we may expect from a random process. However, the subsequent iteration of a few thousand points yields a nice set, which is due to the Chaos Game. The graph of the resulting set is displayed in Sheet 3 [image: image11..pict](Fig. 5), and it represents a very popular fractal known as Sierpinski's triangle.

Figure 4: The iteration of points by randomly selected matrices.

Sierpinski's triangle is the result of iterating among three matrices, all similar to the one displayed in Figure 2, except e2=0.5, f2=0 for the second matrix, and e3=0.25, f3=0.5 for the third matrix. The fractal can be constructed geometrically by repeating the following simple algorithm (Fig. 6): start with a triangle with base and height of length 1 and construct the midpoint segments creating four new triangles; delete the inner triangle and iterate on the outer three triangles. Note that the sketch in figure 6 is used to illustrate the algorithm, but is not part of the tool kit itself. To understand more about the results of the geometric process and our point-wise iteration by randomly selected matrices, we should consider the matrices themselves. 
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Figure 5: Point-wise generation of Sierpinski's triangle.

Each of the three matrices used for Sierpinski's triangle dilates points about the origin by a factor of one-half. In effect, given a point p in triangle A (created at an nth iteration), matrices M1, M2 and M3 without translation map p to a point in triangle B1 (created at the n+1th iteration). Now, the e and f values of Mi translate this point to Bi. As this process continues, points get deeper and deeper into the triangles created by the geometric process and ultimately approach points on Sierpinski's triangle. 

Arguments like the one described above provide opportunity for insight into the workings of the Chaos Game. This phenomenon explains the dense distribution of points in Sierpinski's triangle that we have only begun to demonstrate. A more analytical argument might involve us giving addresses to points (see Peitgen et al) based on the various combinations of randomly chosen matrices. Indeed, the tool kit element displayed in Figure 4 could be modified to aid this analysis as well, but this is left to motivated readers. As further motivation, we can try to generate other interesting fractals by altering the given matrices, thus altering the transformations of iteration.
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Figure 6: Geometric algorithm for Sierpinski's triangle.

Closing Remarks
This report illustrates how non-genetically heterogeneous tool kit mediates the unfolding of a fundamental relationship between matrix algebra and transformational geometry.  The spreadsheet environment described here provides a meaningful and representational manner in which to explore and discuss these topics jointly, rather than separately. In such a way, it boosts the idea that the appropriate use of technology "blurs some of the artificial separations among topics in algebra, geometry, and data analysis" (NCTM 2000, p. 26).

In fact, such artificial separation may lead mathematics educators to question the meaning of matrices outside the context of algebra. On the contrary, we propose a bridge, made possible by appropriate use of spreadsheets that would enhance meanings for both topics. Indeed, we can now view matrices as a useful notation and computation device in describing linear (affine) transformations, and can better see connections between transformational geometry and vectors. Moreover, the computation device can be motivated by and used for the generation of fractals in the plane. It can even be extended to perform in-depth analysis of point addresses in the fractals. The Excel file comprising the tool kit described here can be found under "Papers" at  
 HYPERLINK http://jwilson.coe.uga.edu/EMT668/EMT668.Folders.F97/Norton/Papers/papers.html 

http://jwilson.coe.uga.edu/EMT668/EMT668.Folders.F97/Norton/Anderson.html
.
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