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Abstract: This report stems from the authors' common interest of designing technology-enhanced activities within the context of matrix algebra, transformational geometry, and fractals for collegiate mathematics education courses. It concerns the ways in which a spreadsheet enables us, through encoding and manipulating matrices, to create fractals with reliance upon the Chaos Game. The authors argue that such use of a spreadsheet is conducive to linking properties of matrices and concepts of transformational geometry in a meaningful and representational manner.

Fractals, Matrices and, Spreadsheets
Motivated by students’ interest in learning about fractals and self-similarity in nature, this report illustrates a spreadsheet-enhanced approach to understanding matrices as geometric transformations. Peitgen, Jürgens, and Saupe (1992) relied upon the metaphor of a Multiple Reduction Copy Machine (MRCM) and the use of lenses in describing the encoding of fractal images. In the present report, we focus upon the matrix representations of lenses and the linear transformations that the lenses, in turn, represent. We argue that linear transformations in the Cartesian plane can be easily represented via their effect on a unit square, and, in turn, these resulting lenses are most efficiently represented as matrices. As such, the lenses used in MRCM constitute a fundamental link between two-by-two matrices and linear transformations of the plane. Using numerical, analytical, graphical and geometrical notations of spreadsheets, we can develop the conceptual links between transformational geometry and matrix algebra that are needed to fully understand both topics. In order to frame our ideas, we will first establish the formal relationship between the two topics and then demonstrate how the prescribed spreadsheet environment can aid students in bridging the topics conceptually. 

Formal Approach

To formally build the link between matrix algebra and transformational geometry, we can construct a two-by-two matrix to represent each linear transformation of the plane. This construction relies upon the treatment of points in the plane as two-dimensional vectors on which the usual addition and scalar multiplication are defined. First, consider that a line is defined by two distinct points (xb,yb) and (xd,yd) – the first point indicates a base point and the second indicates a direction relative to the base point. Every other point (x,y) on the line is given by the point (xb,yb) plus some scalar multiple t of the point (xd,yd): 
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[image: image2.wmf][image: image3.wmf]A linear transformation must take lines to lines. Thus, if the respective images of the points, (xb,yb) and (xd,yd), under linear transformation M, are known to be M[(xb,yb)] and M[(xd,yd)], then 

[image: image4.wmf]For now, let us put one more restriction on M by insisting that it fixes the origin:
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Note that removing this restriction yields an affine transformation - a linear transformation followed by a translation. Thus, throughout this report, we will refer to linear transformations with translations as affine transformations.
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By using equations (1) and (2), we get the following results:

Thus, the image of every point (x,y) in the plane is determined by the images of the points (1,0) and (0,1). To illustrate, let M[(1,0)]=(a,c), and let M[(0,1)]=(b,d). Then 
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[image: image8.wmf]In other terms, M[(x,y)] can be defined in a matrix form using four parameters: a,b,c and d:

[image: image9.wmf]If we want to allow for translations, we can augment the above matrix by translations e and f, in the x and the y directions, respectively. Finally, we have the following matrix representation of an affine transformation M:

We can also represent affine transformation M geometrically by considering the image of the unit square in the plane. Linearity of M will force this image to be a parallelogram, which exemplifies the combination of rotations, reflections, dilations, shearings and translations that M performs on the plane. Figure 1 illustrates an example of a affine transformation that includes a dilation, rotation and translation. The figure also includes labels with the notation mentioned above for matrix representations. The relation between the two representations is the focus of our construction of Sheet 1. 
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Figure 1. Geometric representation of an affine transformation.

Activity-Based Approach

As an activity, we suggest the use of the spreadsheets in the following way. Sheet 1 enables the user to change the six parameters (a, b, c, d, e & f) of the three augmented matrices, each representing an affine transformation of the plane. We can make changes to each real-valued entry in a seemingly continuous manner (in increments of .01) using spreadsheet sliders. Also, the dynamics of such changes is interactively illustrated with spreadsheet graphics, which make it possible to generate a graph of the image of the unit square associated with each matrix (Figure 2).

[image: image11..pict]Figure 2. Algebraic and geometric representation of a dilation.

The matrix in Figure 2 has entries a, b, c, d, e and f arranged in the conventional manner. We can immediately see the effect of these parameters in the graph of the unit square: the points (1,0) and (0,1) are scaled down to (a,b)=(0.5,0) and (c,d)=(0,0.5), respectively, and the origin is kept fixed at (e,f)=(0,0). Thus, the image of the transformation is the unit square dilated about the origin by one half. This image square illustrates that each point in the plane is scaled by one half, which we can verify by performing multiplication of the matrix M by an arbitrary vector (x,y). We can use a similar examination to understand the transformation illustrated in Figure 3, except, this time, the origin is not fixed. Note that, according to Figure 3, the points (1,0) and (0,1) are mapped to (a+e,b+f)=(0.5+0.35,0+0.2)=(0.85,0.2) and (c+e,d+f)=(–0.3+0.35,0.5+0.2)=(0.05,0.7), respectively.
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Figure 3. Representations of a combination of a dilation, shearing and translation.

Next, we can analyze the values of coordinates of points (recall that these are being treated as two-dimensional vectors) under the transformation of matrix M1, M2 or M3 selected randomly at each iteration from the three defined in Sheet 1. The iterations are performed in Sheet 2 by "teaching" the computer to perform matrix multiplication. The formula used to do this is shown in the formula bar of Sheet 2 (Figure 4). Note, however, that the matrix entries are now listed as rows (rows 4, 5 and 6). The matrix to be used at each iteration is selected randomly as indicated by the numbers in column C, beginning at C10. By tracking the images of the initial point (x0,y0) after each iteration, we can observe that points are, in general, not revisited. In fact, the pattern as a whole appears very chaotic, as we may expect from a random process. However, the subsequent iteration of a few thousand points yields a nice set, which is due to the chaos game. The graph of the resulting set is displayed in Sheet 3 (Figure 5), and it represents a very popular fractal known as Sierpinski's triangle.
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Figure 4. The iteration of points by a randomly selected matrix.

Sierpinski's triangle is the result of iterating three matrices, all similar to the one displayed in Figure 2, except e2=0.5, f2=0 for the second matrix, and e3=0.25, f3=0.5 for the third matrix. The fractal can be constructed geometrically by repeating the following simple algorithm (illustrated in Figure 6): start with a triangle with base and height of length 1 and construct the midpoint segments creating four new triangles; delete the inner triangle and iterate on the outer three triangles. To understand more about the results of the geometric process and our point-wise iteration by randomly selected matrices, we should consider the matrices themselves. 
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Figure 5. Point-wise generation of Sierpinski's triangle.

Each of the three matrices used for Sierpinski's triangle dilates points about the origin by a factor of one-half. In effect, given a point p in triangle A (created at an nth iteration), matrices M1, M2 and M3 map p to a point in triangle B1 (created at the n+1th iteration). Now, the e and f values translate the Mi(p) to Bi. As this process continues, points get deeper and deeper into the triangles created by the geometric process and ultimately approach points on Sierpinski's triangle. 

Arguments like the one described above provide opportunity for insight into the workings of the Chaos Game. This phenomenon explains the dense distribution of points in Sierpinski's triangle that we have only begun to demonstrate. A more analytical argument might involve us giving addresses to points based on the various combinations of randomly chosen matrices. Indeed, the element displayed in Figure 4 could be modified to aid this analysis as well, but this is left to motivated readers. As further motivation, we can try to generate other interesting fractals by altering the given matrices, thus altering the transformations of iteration.
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Figure 6. Geometric algorithm for Sierpinski's triangle.

Closing Remarks

Using spreadsheets in a manner similar to that described above enables us to experience a fundamental relationship between matrix algebra and transformational geometry. This technology environment provides a meaningful and representational manner in which to explore and discuss these topics jointly, rather than separately. In such a way, it boosts the idea that the appropriate use of technology "blurs some of the artificial separations among topics in algebra, geometry, and data analysis" (National Council of Teachers of Mathematics, 2000, p. 26).

In fact, such artificial separation may lead people to question the meaning of matrices outside the context of algebra. On the contrary, we propose a bridge, made possible by appropriate use of spreadsheets that would enhance meanings for both topics. Indeed, we can now view matrices as a useful notation and computation device in describing linear (affine) transformations, and can better see connections between transformational geometry and vectors. Moreover, the computation device can be motivated by and used for the generation of fractals in the plane. It can even be extended to perform in-depth analysis of point addresses in the fractals.
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