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CHAPTER 1: INTRODUCTION

…the gods have certainty, whereas to us as men conjecture (only is possible).

Alcmaeon

Even from the traditional view of a metaphysical reality, the historical development of mathematics relies upon conjecture.  Specifically, mathematical formalists have held the idea of a continual process of conjecture preceding proof in our accumulation of mathematical truth.  Lakatos (1976) cites and refutes this belief in his Proofs and Refutations.  He replaces this notion with one of a cycle of continually revised conjectures and attempted proofs.  Either way, we have a historical development in mathematics that is dependent upon hypothesis, conjecture or guess.  Webster’s 3rd New International Dictionary (Gove, 1986) distinguishes between these three only by degree of evidence supporting them; hypotheses are more strongly supported while guesses are “more flimsy”.  From the Latin “conjecere” (to throw together), I use conjecture to describe either hypothesis or guess, and everything in between.  Here, conjecture is allowed to include any formulation that is “thrown together” from existing concepts.  Thus, this term not only applies to the formulations of famed mathematicians, but to the hunches we all ponder each day.

Determining the importance of conjectures in individual mathematical learning depends upon the epistemology of the researcher.  It also depends upon the researcher’s view of mathematics.  The formalist’s view of mathematics as a set of discovered truths (Lakatos, 1976), along with the behaviorist’s epistemology, could underplay the role of conjecture.  Though there are many other philosophies that embrace student conjecture, I focus here on my own epistemology of constructivism, an epistemology that inherently implies a non-formalist view of mathematics. 

Assuming the constructivist epistemology, conjecture plays a fundamental role for the learner. Under this paradigm, one can never know a metaphysical reality.  Thus, truth cannot be perceived or communicated.  Rather, the individual constructs his or her own reality.  As Kant believed, “our mind does not derive laws from nature, but imposes them on it” (von Glasersfeld, 1987, p. 195).  Ernst von Glasersfeld argues that our experiences offer input for our minds to structure into a reality, but we could never claim that this reality matches an ontological one.  Rather, we continually test our realities through further experience.  The perceived versus expected outcome of such a test often gives rise to a re-structuring of our realities.  Von Glasersfeld (p. 196) uses the metaphor of a key: “the fit describes a capacity of the key, not the lock.”  Thus, if our realities (keys) fit, we need not change them.  When our expectations do not fit perceived realities (locks), we have need to re-structure our realities.  This process of expectation, testing and re-structuring resembles Lakatos’ model of proof – conjecture, attempt to prove, re-conjecture (Lakatos, 1976).  In fact, at least when we are aware of our expectations, these are conjectures, which hold some degree of certainty.

The constructivist epistemology applied to mathematics education is no less dependent upon conjecture.  “Our view of mathematics as a product of the functioning of intelligence defines mathematics as a living subject” (Steffe & Thompson, 1998, p. 3).  Here, students develop mathematical concepts, schemes and images that fit their lived mathematical experiences.  When a student perceives a situation in experience that is problematic to some existing concept or concepts in his or her constructed mathematics, these concepts in the student’s mathematical reality are at a state of disequilibrium.  If existing concepts, schemes and images are inadequate to resolve this state, new or modified ones must be developed.  As before, these new expectations (at least when we are aware of them) constitute conjecture.

Conjectures arise through reasoning, as a means of re-establishing equilibrium to our conceptual structures.  We must establish new, plausible reasons to explain problematic experiences.  The famed mathematics professor George Polya refers to this activity as plausible reasoning.  He claims that “we support our conjectures by plausible reasoning” (1954, vol. I, p. 12).  As he cites in Mathematics and Plausible Reasoning, reasoning through generalization, specialization, analogy and induction (p. 12) adds plausibility to mathematical conjectures, thus lending support to them.  However, these are only some techniques within a larger scope of plausible reasoning, which supports conjecture only with respect to our confidence in it.  Adhering to the constructivist epistemology, we could never claim our conjectures represent a universal truth (even with formal proof).  Still, plausible reasoning further connects these guesses or hypotheses with existing constructs, resolving the disequilibrium.

Statement of Purpose

Though it is evident that they are fundamental in learning mathematics, little research is devoted to the nature of conjecture and plausible reasoning.  Polya’s work, Mathematics and Plausible Reasoning (1954, vol.’s I & II), develops several hypothetical situations which exemplify plausible reasoning.  Lakatos’ work (1976) similarly develops hypothetical revisions of conjecture. Creating Miracles (Healy, 1993) – a novel based on the Build-A-Book classes – and the work of Daniel Chazan
 (1989), relate the benefit of student conjectures in a geometry classroom.  However, none of these publications focus on the nature of forming, supporting and revising conjectures in actual students.  A better understanding of this process is vital in understanding student learning of mathematics.  It might also help teachers in establishing better environments for students’ classroom experiences that promote conjecturing.  In geometry, a very tactile and visual field of mathematics, this understanding might be most readily achievable.  The purpose of this study, then, is to investigate the conjectures and plausible reasoning of three high school geometry students in individual case studies.

Though my study is focussed on conjecture and plausible reasoning, the practical decision to work with geometry students in their geometry environments should influence the nature of the data.  Thus, my research questions are confined to reasoning in geometry.  I do not pretend that this reasoning is ubiquitous in mathematics, but do hope to characterize some aspects of mathematical reasoning in general.  Having said this, the following questions (framed in geometry) are intended to guide my study: What is the nature of student conjecture in geometry? What is the nature of plausible reasoning supporting these conjectures? Which mathematical activities tend to precede or coincide with conjecture and plausible reasoning?

Background of the Study

This study began from a mathematical experience of my own.  During my first year in the Master’s program at the University of Georgia (UGA), I was taking a course from Dr. James Wilson, entitled “Computers and Algorithms (EMT668).”  I began working on a problem of tangent circles which I would continue working on for about one year.  In fact, I enrolled in an independent study devoted to refining and proving a few of my conjectures related to tangent circles.  Though many of my conjectures were previously recorded and proven by others, my elation from these personal creations was not muted.  As Kepler proclaims, “I shall never succeed in finding words to express the delight of this discovery” (Polya, 1954, vol. 1, p. 197).  The “discovery” to which he refers is that the six planets follow spherical orbits circumscribing regular solids, which each circumscribe the spherical orbit of another planet.  Though, this is not a commonly held view of the world, Kepler’s conjecture provided new structure for his reality.  Likewise, my own conjectures allowed me to re-structure that part of my mathematics that had been off balance for nearly a year.

Specifically, my problem involved finding the locus of centers of tangent circles to two given circles.  I constructed the solution using a dynamic geometry software called Geometer’s Sketchpad (GSP).  I was dismayed to find that the desired locus formed an ellipse with focal points at the centers of the two given circles.  Though the Arabic mathematician al-Quhi had developed this relation two thousand years earlier, the problem of explaining this phenomenon was fresh and problematic for me.   It was not a concept that I could develop readily, but I would develop, test and modify many conjectures over the next year until the phenomena was no longer problematic for me.

In reflecting upon this experience, I have wondered how I constructed the conjectures that resolved the conflict between my existing, related concepts and my new perceptions of tangent circle phenomena.  I believe that all learners are capable of such constructs and, following my constructivist epistemology, believe that such constructs are necessary for learning.  Though reflecting on the formation of my own conjectures offers some understanding of this development, the lived experience of conjecturing is lost.  Also, it may be difficult to have explicit understanding of my own mathematical reasoning, since this requires another level of abstraction.  In realizing this, I decided to work with high school mathematics students to further my study.

My own mathematical experience is broad and deep.  I was very successful in testing and placement in mathematics throughout high school.  When I entered college, it was only natural to choose mathematics as my major.  I have continued a conscientious development of my mathematics through courses and experiences in graduate school. Though the depth of my mathematical study (in which geometry is no exception) distances me from the mathematical experience of high school students, my understanding of mathematics and my reflections on this understanding help me adapt my thinking to the various mathematical activities of students.


As a mathematics educator, I felt an obligation to facilitate learning for students.  This feeling was only magnified in this study when I consider that the students with whom I was working were volunteering their class time and time after school.  I also felt an obligation to the teacher, a friend of mine who has been very helpful to my research, to contribute to his students.  Though students should learn from their experiences in this study, I had to be careful that I did not mask their processes of conjecturing and plausible reasoning with my instructions.  In order to lessen my feeling of responsibility toward learning during interviews, I offered each participating student my services in tutoring after school.


During my interviews with students, I continually tried to encourage, identify and understand student conjectures.  Earlier, I defined conjecture as a guess that holds some degree of certainty for the student.  Here, I add another stipulation: the conjecture must be problematic for the student.  This dismisses observation and ideas taken as fact from conjecture, even if these “facts” are later proven wrong.  In short, the student must find need to “test” the idea and justify it through plausible reasoning (or even deductive proof) in order for the idea to constitute conjecture. 

My concept for conjecture might best be described by a metaphor of a ship navigating through a rocky river at night.  If the captain is confident in the direction of a clear channel, she might not flash her light to look ahead.  Whether she navigates her way through or hits a rock, the direction was never problematic.  It is only when she finds need to shine the light and look that she conjectures.  Thus, I view conjectures not only as being “thrown together” somehow, but also as being thrown out (like the light) into perceived reality, as we await response.  As with the ship, however, the only response we can receive back is the negative one (i.e. there’s a rock!).  All other responses only show a clear path (viability) directly ahead, and do not guarantee safe a channel through the rocky river.

Overview of the Study


This study is framed by the constructivist epistemology.  Thus, I have assumed an experiential view of mathematics.  “The experiential world constitutes the testing ground for our ideas (cognitive structures)” (von Glasersfeld, 1987, p. 197).  In my study, I attempted to gain insight to the experiential mathematical worlds of three high school geometry students and the mathematical activities associated with their conjectures and plausible reasoning.  Students were working with me using Geometer’s Sketchpad (GSP), so that this dynamic geometry software and myself were included in “the testing ground” for students’ conjectures.


I selected the three students for this study from a tenth-grade geometry class, using teacher recommendations and “Module 1” for van Hiele level descriptors (Fuys et al., 1988, pp. 17-28).  The goal in student selections was to find motivated students of varying ability.  The van Hieles’ study offers a means for identifying students of differing abilities in geometric reasoning.  I conducted the “Module 1” interview with each student in our first private meeting.  The remainder of our meetings were held in a lab using GSP.


I met with each student once per week, for six weeks.  Aside from the first one, these meetings were guided by the teaching experiments described by Les Steffe and Pat Thompson (1998).  Their activities evolved from free play to goal directed activity, as students were introduced to the rules of Euclidean construction in GSP.  As teacher-researcher, my role in these experiments was “to continually establish meaning of the students’ language and actions” (p. 11).  Though teaching the students was not my intent, I also served as a guide in directing student activity.  I felt that this guiding was necessary when students became inactive or frustrated.


I intend to use the data from this study in order to better understand and explain the nature of students’ mathematical activities in forming and supporting conjectures.  This data has been collected in the form of journal entries and videotapes.  My journal is a collection of reflections on each interview experience, as well as reflections on my own mathematical reasoning.  The videotapes consist of recordings of the final two teaching experiments with each student.  The required analysis of this data, in fulfilling the study’s purpose, is reported in chapter four.

Limitations and Expectations


My foremost expectation in this study is to learn.  Through continual reflection on my own reasoning, I expect to develop a deeper consciousness of the mathematics that I construct and the means by which I construct it.  However, according to Giambattista Vico and the constructivist epistemology, “the only way of ‘knowing’ a thing is to have made it” (von Glasersfeld, 1987, p. 202).  Though I can know the mathematics that I have made, I cannot expect to fully understand the fabricator of this creation (myself).  Rather, I expect to construct a more reasoned abstraction of my mathematical development.


Vico’s argument presents a similar limitation in my work with the three geometry students: I cannot expect to understand the mathematics of another person, much less the mathematical development of another person.  Instead, I expect to construct a viable interpretation of each student’s mathematics and mathematical reasoning.  This construction will be continually evolving as I create, modify and test conjectures about the reasoning of each student.  Thus, I expect to complete this study with a well-developed, plausible conception of each student’s mathematics and mathematical reasoning – particularly concerning the formation and support of conjectures.


I expect that my constructions, specifically for the geometric reasoning of these three students, will display both diversity and common reasoning.  The perceived diversity will help me to explain the scope of geometric reasoning among high school students.  If I further abstract from my constructions the common reasoning among the students, this abstraction might suggest a model that is useful in understanding the mathematical development of other geometry students.  We might also infer models for student reasoning in mathematics in general.


Though further inferences may be made, this study focuses on conjecture and plausible reasoning in geometry.  Moreover, students are working in the realm of Euclidean construction, using GSP.  My own presence in working with students further influences the students’ mathematical environment, thus influences their reasoning.  So, when considering the implications of this study, these factors must also be considered.

CHAPTER 2: LITERATURE REVIEW

I am fully aware of the fact that I am merely offering conjectures – but they are conjectures which I have found useful in constructing a model of mental operations.

Ernst von Glasersfeld, 1991


While observing the activity of students as they form and support conjectures, I am forming and testing my own conjectures in an attempt to develop a model of students’ reasoning.  In the introductory chapter, I argued the necessity of conjecture in developing or modifying any concept.  This argument hinges upon the epistemology of constructivism (largely developed by von Glasersfeld).  As admitted by von Glasersfeld in his quote above, this epistemology, being a model of knowing, must also depend upon conjecture and plausible reasoning.  In this chapter, I highlight the aspects of this and other theoretical models that will be helpful to me in the conceptual analysis of students’ mathematical reasoning.

Constructivist Epistemology


“The epistemological problem – how we acquire knowledge of reality, and how reliable and ‘true’ that knowledge might be – occupies contemporary philosophy no less than it occupied Plato” (von Glasersfeld, 1987, p. 195).  Von Glasersfeld uses Darwin’s evolution theory as a metaphor in describing his own (radical constructivist) epistemology.  Here, ideas are likened to members of a species.  “It is always reality which, by limiting what is possible, inexorably annihilates what is not fit to live” (p. 197).  When our ideas meet conceptual constraints in our own experiential worlds, they are no longer viable and must be modified.  However, ideas that have not met constraints can be considered only viable.  Von Glasersfeld further argues that our present ideas “throw no light whatever on the objective properties of the world that manifests itself in negative effects alone” (p. 198).  Thus, our understanding of the world is truly our own creation – one that we have developed and modified to survive perceived “negative effects.”  To the degree that this understanding is successful in explaining our experiences, it is confirmed.  Though our understanding of a phenomenon may have to be modified or even abandoned if further experiences refute them.  

It is similar in mathematical reasoning and development.  Concerning mathematical conjecture, though reasoning (including deductive proof) may add plausibility to our conjectures, they remain only viable in our experiential worlds if they are not disproved.  For example, testing instances, through measurement, that the Pythagorean conjecture holds in right triangles adds plausibility to the theorem.  Proving it deductively relates for us a stronger, logical dependence to and coherence with existing conceptions.  But, a single counterexample, such as that of a triangle in spherical geometry, may introduce the need for modification or qualification of the theorem.  Of course, we refer to this conjecture as a theorem because it has been deductively proven in Euclidean geometry; this is to say that it is a (human) logical consequence of previously proven concepts, which eventually rely upon a basic set of assumptions.  So, the degree to which we can trust such a proof depends upon the degree to which we trust the basic assumptions and human logic.  His uncertainty of the two may have inspired McCulloch to say “to have proved a hypothesis false is, indeed, the peak of knowledge” (p. 199).


It was Piaget who said, “Intelligence organizes the world by organizing itself.”  His theories of assimilation and accommodation are indispensable in understanding a constructivist perspective of conceptual organization and development.  From Piaget’s description of “assimilating new elements to already constructed structures (innate, as reflexes are, or previously acquired),” von Glasersfeld maintains that “cognitive assimilation comes about when a cognizing organism fits an experience into a conceptual structure it already has” (von Glasersfeld, 1995, p. 62).  He explains that, in assimilating ideas, we perceive only those aspects of an experience that fit our existing conceptual structures – all others are disregarded.  This process seems analogous to the previous metaphor of biological evolution, in which our ideas must fit our own constructed realities in order to remain viable.  Recognizing that assimilation “reduces new experiences to already existing sensori-motor or conceptual structures,” von Glasersfeld asks, “why and how learning should ever take place” (p. 63).


The need for accommodation arises when the result of an action following a particular “scheme” is unexpected.  Von Glasersfeld depicts the following model for such a scheme:

[image: image1..pict]
[image: image2..pict][image: image3..pict]
Figure 1: Pattern of Action

Here, when an organism perceives a familiar pattern in a situation that triggers some particular action, the organism acts expecting results that are based on past experiences.  The organism then attempts to assimilate the perceived result into the existing scheme.  When this is not possible, there is a “perturbation,” caused by an unexpected result, which is problematic in the present cognitive structures of the organism (p. 65).  This is the domain of conjecture – guesses or hypotheses intended to resolve problematic situations.


Organisms attempt to eliminate perturbations in order to return to a state of “equilibration.”  In order to eliminate perturbations, these self-organizing organisms (such as ourselves) must create new structures or modify existing ones that will account for perceived results.  When we reflect (an operation of any self-organizing system that is described below) upon these “accommodations” and other existing concepts, further inconsistencies are often revealed in our own cognitive structures. These are then new perturbations, and the process of assimilation, accommodation and reflection continues until we reach a state of equilibration.  The learning process is summarized for Piaget by von Glasersfeld as follows: “Learning takes place when a scheme, instead of producing the expected result, leads to perturbation, and perturbation, in turn, to an accommodation that maintains or re-establishes equilibrium” (p. 68).  As above, we should include the possibility that this equilibrium might only be re-established after a series of accommodations and (through reflection) their associated perturbations and their associated accommodations…


The purpose of refection – more specifically, “reflected abstraction
” (von Glasersfeld, 1991, pp. 58-59) – is to maintain coherency amongst conceptual constructs.  Much as mathematicians strive for consistency in their work, individuals reflect upon their conceptual structures in trying to maintain rigor (of course, this reflection also applies to the mathematical concepts of the individual and may not always be a conscious activity).  Reflected abstraction – “a process of retroactive thematization” – involves “reflection upon reflection”
 (von Glasersfeld, 1991, pp. 58-59).  In other words we reflect upon concepts which are, at simplest, products of reflection on re-presentations.  Thus, we must pursue an understanding of re-presentation as well as abstraction in developing a concept of reflected abstraction.


In his chapter “Abstraction, Re-Presentation and Reflection,” von Glasersfeld quotes John Locke for a definition of abstraction: “This is called Abstraction, whereby ideas taken from particular beings become general re-presentations [hyphen added per von Glasersfeld] of all the same kind” (Von Glasersfeld, 1991, p.47).  At least as von Glasersfeld interprets it, “re-presentations” do not require an exact correspondence with an ontological reality (which he would deem impossible), but an operation of the mind to conjure images from past experiences.  Also, at higher levels of abstraction, it is the ideas from previous reflections that are reflected upon.  These further “reflected abstractions” allow us to compare existing concepts for consistency, where inconsistencies amongst these concepts cause further perturbations.


As previously stated, when our actions (including mental operations) lead to unexpected results (or when reflected-abstraction reveals inconsistencies), it is reasonable to consider aspects from experiences that were previously disregarded in assimilation.  In order to achieve equilibrium, we might explain the perceived results of our actions in terms of the previously disregarded aspects.  When we reflect upon several such experiences and examine the commonalties, this is called induction.  Often in mathematics, we do this by consciously (even methodically) examining a number of cases to determine a rule explaining them.  However, we do not need to be aware of our reasoning and can construct conjectures for explaining phenomena from a single experience or from ideas developed through several experiences that are considered as one case; this is called abduction.  As Pierce defines it, “in abduction, we pass from the observation of certain facts to the supposition of a general principal to account for the facts
” (von Glasersfeld, 1991).  Again, reflections upon these principles in coordination with other existing concepts may reveal further perturbations.  It is the role of any cognitive structure – through assimilation, accommodation, reflection, abduction and, generally, cognitive development – to attempt to reach a state of equilibrium in which further perturbations can be eliminated.

Images and Visualization


I use the hyphen in “re-presentation,” as von Glasersfeld has, to emphasize that such a creation does not represent or match another, but, instead, is the product of an operation of the mind which presents an image of a previous experience.  Thus, as an action, the process of re-presentating conjures an image.  Or, we may say that a re-presentation, as a thing, is a part of an image.  However, images need not be bound to re-presentations, as re-presentations re-present past experiences.  Rather, images may also be those of concepts developed through much experience, such as a concept of parallel lines.


For a thorough definition of an image, I turn to Pat Thompson who has done extensive research on the relationship of images and mathematical reasoning.

By “image” I mean much more than a mental picture.  Rather, I have in mind an image as being constituted by experiential fragments from kinesthesis, proprioception, smell, touch, taste, vision, or hearing.  It seems essential also to include the possibility that images can entail fragments of past affective experiences, such as fearing, enjoying, or puzzling, and fragments of past cognitive experiences, such as judging, deciding, inferring, or imagining. (Thompson, 1996, pp. 267-268)

Here, images are created from “fragments of experience.”   Pat Thompson offers the example of a student’s image for tangent lines (pp. 271-272).  If the student’s experiences are confined to finding tangents to circles, the student’s image would be unlikely to account for tangents which do not lie to one side of the curve (such as with the tangent to the simple cubic at the origin).  


“In lay situations, people understand words through the imagery evoked when they hear them” (p. 271).  It is similar with mathematical concepts.  The student mentioned above will rely upon his existing image of a tangent line to understand the problem.  When the existing image is lacking, the student will not be able to understand this problem.  If students are to reason in mathematical situations, “[they] must first understand the situation” (p. 273).  For this reason, Pat Thompson claims that “mathematical reasoning at all levels is firmly grounded in imagery” (p. 267).


“Pat Thompson demonstrated how advanced mathematics students’ impoverished images of rate obstructed their understanding of derivative, integral, and relationships between them” (p. 280).  In this study, he demonstrates that mathematics educators should be very attentive to students’ images (1994).  He cites his experiences with a seventh-grader named Sue who displays a remarkable understanding of calculus by answering questions about an accelerating car.  He claims that images are not only vital in understanding a situation such as this one, but we act (mental operations) in these images as well (1998, p.280).  Here, he relies upon Piaget’s idea of mental operation, “that all knowledge originates in action, both bodily and imaginative” (1994, p. 4).


Mental operations include those performed on visualizations.  Here, I use the word visualization (as opposed to image) the way Alan Russell does, as a sort of mental picture (Russell, 1996).  However, the word “picture” may mislead, because these are still mental constructs and not replicas of ontological reality.  As with images, these mental pictures are developed through many experiences, as a sort of collage.  But, with visualization, the data needed for this collage is limited to visual perception.  For example, if asked to imagine a triangle, one’s image may include aspects from other senses or from past affective experiences associated with the word or concept, but it most certainly should include a re-presentation of a two-dimensional figure with three sides.


Piaget suggests that we mentally operate on mental pictures (visualizations) as we would physically operate on a physical model (Piaget & Inhelder, 1963, p. 3).  For instance, if asked the result of tracing your triangle’s path as it is rotated about one leg, with some effort one should conclude that the result is cone-like.  When we reflect upon the operation that gives this result, it should be clear that the mental rotation is much like that we would perform with our hands.  Per Piaget, I refer to such operations as spatial operations.  It is important that I attend to such activities when performing teaching experiments with students in geometry.

Conjecture, Plausible Reasoning and Observation


“None of the ‘creative’ periods and hardly any of the ‘critical’ periods of mathematical theories would be admitted into the formalist heaven, where mathematical theories dwell like the seraphim, purged of all the impurities of earthly uncertainty” (Lakatos, 1976, p. 2).  Imre Lakatos is insistent, throughout Proofs and Refutations, on demonstrating the goodness of informal mathematics.  His arguments come at a time when he perceives a dominant “formalist school” (p. 1) providing the paradigm for mathematical development.  He argues that such a paradigm ignores the history or “growth” of mathematics.  This paradigm, as he demonstrates in a mock dialogue, also undermines the growth of mathematics in the individual.


Lakatos argues, instead, for another view of mathematics.  He cites the importance of conjecture, counter-examples (both local and global), lemmas and proofs.  Rather than submitting these as finished products, he demonstrates that refuted proofs yield better proofs and that poor conjectures often yield better ones through the revision process of argued reasoning.  This last idea is also argued by George Polya: “Many a guess has turned out to be wrong but nevertheless useful in leading to a better one
” (Wilson et al, 1993, p. 63).   


If Polya and Lakatos share one common philosophy, it is that mathematics is best viewed as an activity requiring a laborious and cyclical process of conjecture and plausible reasoning.  In undertaking the task of plausible reasoning, Polya cites four broad techniques: generalization, specialization, analogy and induction (Polya, 1954).  He offers examples of reasoning, based on these techniques, which add plausibility to conjectures.  As an example: “If A is analogous to B [where A and B are conjectures], and B is proven true, then A is becomes more credible” (vol. 2, p. 10).


As mentioned in the introduction, I rely upon a quote from Polya’s Patterns of Plausible Inference to distinguish conjecture from plausible reasoning, wherein he claims that plausible reasons add credibility to conjectures (1954, vol. I, p. v).  He (as with Lakatos) says very little about why we are inclined to form conjectures, but does offer the following quote: “If a naturalist observes a striking regularity which cannot be attributed to mere chance, he or she conjectures  that the regularity extends beyond the limits of his actual observations [emphasis added]” (vol. 1, p. 49).


Daniel Chazan and Richard Houde infer from Polya’s work that “conjectures are the result of plausible reasoning” (1989, p. 3).  This is quite the reverse of my previous reference that “we support our conjectures through plausible reasoning” (vol. 1, p. v).  However, this new twist in definition is useful as I try to describe students’ activities leading to conjecture.  To differentiate the use of terms, I refer to Chazan’s interpretation as pre-conjectural plausible reasoning and my interpretation of Polya as post-conjectural plausible reasoning.  In any case, I find the ideas of Chazan and Houde helpful, too, because they focus on conjecture in geometry.


“A conjecture in geometry is a statement that may be true or false; at the time of consideration, the conjecturer does not know for sure whether it is true or false, but thinks that it is true” (1989, p. 3).  This definition is nearly compatible with the one I have adopted.  I did not insist, however, that a conjecture be a statement.  I allow for conjectures to be unexpressed ideas as well.  Still, this definition implies two important aspects of conjecture: they are uncertainties (guesses), and the conjecturer is concerned about their credibility.  

Chazan and Houde further insist that conjectures pertain to whole “sets of objects” which “explicitly mention the intended set of objects” (p. 3).  I do not adopt this aspect of their definition.  I feel that conjectures that will be important to me in this study should include guesses about particular situations as well.  It may be too obtrusive to insist that students generalize their claims to whole sets of objects.


Chazan and Houde do provide a solid ground for my definition of “observation.”  “In order to distinguish conjectures from statements about a finite number of cases that can be proved by an examination of cases, we call these later statements ‘observations’” (p. 3).  Though, again, I disagree with the disqualification of conjectures based upon  “a finite number of cases,” I do not feel I am concerned with students simple observations, which are readily “examined” for credibility.  However, many of these “examinations” may be false as well.  Thus, I distinguish between conjecture and observation primarily on the grounds of students’ concerns about the credibility of such notions.


Though Chazan and Houde identify the value of student conjecture and prescribe class activities to support student conjectures, they do little to describe the nature of conjecture.  This is also the case with Creating Miracles (Healy, 1993).  Here, Chip Healy describes his experience with “Build-a-Book geometry classes” (p. VI).  These classes are largely founded upon the contributions of student conjectures.  Reading about his classroom experiences has led me to consider possible contributions of my study to such classes.

Formal Reasoning and the van Hiele Levels


 Barbara Inhelder and Jean Piaget conducted extensive research on the development of reasoning in adolescents (Inhelder, 1958).  They identified stages in this development which progress from pre-operational to concrete to formal reasoning.  The stage of formal reasoning, stage III is presumed to begin at eleven or twelve and continues through fourteen or fifteen years of age, at which point the sub-stage IIIB begins.  Since I am working with children between fifteen and seventeen years of age, I focus now on stage III and its sub-stages (IIIA and IIIB).


Of stage III (formal) reasoning, Inhelder states that “henceforth thought proceeds from a combination of possibility, hypothesis, and deductive reasoning, instead of being limited to deductions from the actual immediate situation” (p. 16).  Whereas, children at stage II may rely upon specific situations in which to identify relations, students at stage III recognize the “reciprocity” between two variables in situations that they have yet to observe.  In other words, they draw from experiences in specific situations to create general hypotheses about the possibility of a hypothetical situation. Inhelder and Piaget often refer to this as “hypothetico-deductive” reasoning.


Inhelder and Piaget also identify a system of propositional operations.  This system is described in terms of symbolic logic.  Given two observed events A and B, let A’ and B’ denote the absence of A and B, respectively.  Thus, we have four possible “elementary propositional conjunctions” (p. 16) from the possible observed events: AB (A and B concurrent), AB’ (A and B’ concurrent), A’B, and A’B’.  The authors conclude that, in stage III reasoning, “[this] system of propositional operations is in fact a combinatorial system” (p. 122).  To understand this, we consider that any one of the conjunctions can occur with any of the others.  For instance, if AB and A’B’ (When A happens B happens, and when A doesn’t happen, B doesn’t either.), then A and B are equivalent.  The combinatorial system arises when we consider that (like a binomial expression) each of the conjunctions can either exist or not exist in a particular phenomenon.  Thus, we have two-to-the-fourth-power (sixteen) possible combinations.


The differences between sub-stage IIIA and sub-stage IIIB reasoning are subtle.  Both use a combinatorial system to determine relations between events or variables, but the latter is more systematic.  Inhelder describes this as “a more direct method with an eye for proof – deductive from the start” (p. 21).  Still, both sub-stages share the larger distinction from stage II reasoning, on the grounds of possibility and reality.  Whereas stage II reasoning draws conclusions on possibility based on observed reality, in stage III reasoning “it is reality that is now secondary to possibility” (p. 251).


It is the ability to form conjectures about possibility from specific experiences that concerns me in this study.  Though conjecture occurs at all stages, I am interested in working with students whose reasoning affords them the potential to readily formulate and reason with conjectures of possibility.  Thus, it is important that these students be reasoning at stage III.  Judging by my initial experiences with these students (with the added comfort of Inhelder’s age descriptions), I am confident this is so.  However, the van Hiele levels for these three students are not so certain.


Van Hiele levels differ from the previously mentioned stages of reasoning in a few key ways.  First, van Hiele level descriptors apply specifically to geometric reasoning, as it is conventionally encouraged in the secondary schools.  Second, there are no prescribed ages identified for these levels.  In fact, Pierre van Hiele claims, “I have taught geometry to people of thirty years who never had learned anything of geometry before” (Burger and Culpepper, 1993, p. 140).  Finally, the van Hieles prescribed teaching strategies to facilitate the progression from one level to the next (Fuys et al., 1988).


In their chapter, “Restructuring Geometry,” William Burger and Barbara Culpepper label the five van Hiele levels as holistic, analytic, abstract, deductive and rigorous (1993, p. 141).  Though these levels are described in some detail in the next chapter, I would like to begin to consider some of their relations to formal reasoning here.  For one, it seems that the deductive level is unattainable to students who are not reasoning at stage III.  At the deductive level “proof is viewed as the final authority” (p. 142).  This implies that students could determine the possibility (or impossibility) of unobserved situations based on a formulation – an ability unique to stage III reasoning (Inhelder & Piaget, 1958, p. 251).  However, it is not clear whether the informal arguments at the abstract level necessarily imply such an ability.  Reciprocally, there seems to be no defining attribute of stage III reasoning that would necessarily imply a particular van Hiele level.  These relations are not the focus of my study, but remain of interest to me.

CHAPTER 3: METHODOLOGY

Oh, I see what we’re doing!

Diane, 1999


I use pseudo-names (Diane, Graham and Sarah) for the high school geometry students in this study.  The methods used for conceptualizing their mathematical reasoning are described in this chapter.  These methods include the teaching experiment methodology (whose theory and structure I have adopted for the teaching experiments), the environment in which these experiments are conducted, and the student selection process.

Teaching Experiment Methodology


Data collection and analysis for this study are framed by “teaching experiment methodology,” as described by Steffe and Thompson (1998).  The purpose for using this method, “to experience, firsthand, students’ mathematical learning and reasoning” (p. 1), is completely in line with the purpose of my study, in which I am concerned with the conjectural aspects of learning and reasoning.  Under the same epistemological theory as this study (constructivism), teaching experiments were designed so that the teacher-researcher can “construct models of students’ mathematics” (p. 3) from experiences with the students.  “Looking behind what students say and do in an attempt to understand their mathematical realities is an essential part of the teaching experiment” (p. 3).  Conceptual analysis, then, is one of my primary roles when working with students.


The conceptual analysis relies upon conjecture as well – my conjectures for modeling students’ mathematics.  Throughout my observations and communications with the students, as well as my retrospective review of the data after each teaching experiment and even now, I am continually modifying my conceptions of the students’ mathematics.  My conjectures concerning the students’ mathematics are local and constrained to the particular situations and student activities regarding the situations.  They consist of my predictions of what students might be able to do in further mathematical activities, as well as my interpretations of the students’ meanings of what they say and do in the current situation.  To the extent that the perceived activities of these students fit within my predictions and interpretations, my conjectures become plausible.


To distinguish my conjectures of students’ mathematics from their own mathematical conjectures, I refer to the former as working hypotheses.  As described above, these hypotheses are continually tested and modified through my interactions with the students.  In this manner, my hypotheses are confirmed, or refuted and modified, though they can never be verified in the sense that they truly match the students’ own mathematical reasoning.  Rather, my goal is to develop and modify hypotheses of students’ plausible reasoning which are confirmed by my experiences with the students and refuted by none of these experiences.  During the teaching experiments, communication plays a vital role in the development of such hypotheses.


Aside from prediction and interpretation of directed activity, students’ answers to questions that I ask may also confirm or refute my working hypotheses.  Students may be asked, “Why did you do this?”,  “Why do you think that happens?”, or “What would happen if you did this?”  Answers to questions such as these serve as plausible reasons for students’ actions.  Because students are not always aware of their reasons of action and because much of their reasoning occurs only after the action in an attempt to explain the action, it is my responsibility to develop an explanation for the source of their action, based on my experiences with the students.  Thus, I am distinguishing between pre-conjectural and post-conjectural plausible reasoning.


Communication with the student plays another vital role.  Questions and suggestions offered by me are designed to motivate mathematical activity on the part of the student.  Clearly, it is important that the student initiates and sustains mathematical activity throughout each experiment.  Directing questions and suggestions to the student will be most important when a student becomes mathematically inactive.  In order to facilitate student interest from my suggestions, without worsening the level of frustration, I need to identify and work within the student’s “zone of potential construction” (Steffe, 1992, p. 261).

Steffe refers to the zone of potential construction of a student with respect to a mathematical concept or operation as the predicted accommodations of the student arising as a result of immediate experience in his or her environment (of which I, as teacher-researcher, am a part).  Though it is important that I facilitate mathematical environments that are problematic for the students, the goals the students establish should be attainable by the predicted accommodations.  If the accommodations necessary to attain the goals fall outside the zone, students would have little hope of modifying their reasoning in the more or less short term.  Thus, students are likely to abandon the situation or become frustrated in the environment.  When this happens, I must intervene.  The goal of these interventions is not to teach the student my own mathematical conjectures about the situation (as with Vygotsky’s zone of proximal development), but to encourage the student to form his or her own conjectures through plausible reasoning.  By asking questions, I can help the students to transform problematic situations into ones which are both problematic and which lie within their zone of potential construction.  Since these two conditions contribute to mathematical reasoning, I can best develop plausible conceptualizations of students’ mathematical reasoning when students are working in this state.

Teaching experiments usually include the teacher-researcher, a student or students, a witness and some means for recording.  In this study, I will serve as teacher-researcher and there will be no witness.  This decision simply arises from a lack of human resources.  Of course, this makes my job as a teacher-researcher more difficult.  Also, since the first experiment does not concern Euclidean construction explicitly and only the later teaching-experiments are designed to be rich with goal-directed activity, I only video-record the van Hiele interview and the last two teaching experiments with each student.  My experiences from the other two teaching experiments, which consist of free play in GSP and the introduction to Euclidean rules of construction, are recorded in journal entries.  In each of these meetings, I am working with a single student.

Setting: GSP and Euclidean Construction

Students will work in the realm of Euclidean constructions.  They will begin with a minimal set of axioms and use these axioms to develop constructions.  These constructions are performed in Geometer’s Sketchpad (GSP), which students use for the duration of each teaching experiment.  The students are familiar with GSP, as their geometry teacher instructs them in working with it each Friday.

 GSP is dynamic geometry software that allows students flexibility in representing their ideas while allowing me to examine these representations.  The program is "dynamic" and "flexible" in that when given parameters are changed, the constructions that rely upon these givens change accordingly.  This allows students to test conjectures (which were based on particular parameters) for more general cases, without needing to repeat their constructions.  For example, if a student constructs the circumcircle for a triangle defined by three given vertices, the construction should also work for the triangle obtained after translating (by a simple click and drag) one of the vertices.  When appropriate, students may also use the measurement tools in GSP to test conjectures about relationships of sides, angles and areas.  However, I may also deem this feature to be off limits when its use is likely to resolve the student’s problematic state, which is necessary for any student conjecture.

GSP adheres to the rules of Euclidean constructions as described below.  However, GSP has several short-cut features for basic constructions.  Since they cannot be turned off, students must agree that these features are "off limits" until they can complete each of these constructions independently.  Student constructions, whose reasoned methods often serve as conjectures, must be their own.  These constructions (and, thus, the associated conjectures) should follow from the most basic and intuitive of geometric axioms for the high school curriculum.  The following descriptions for the rules of Euclidean construction are taken from Ted Shifrin’s Abstract Algebra:

· Initially, [students] are given two points in the plane a unit distance apart; these points are considered constructed.

· Given any two constructed points, we are allowed to draw the line passing through them.

· [Given any two constructed points], we are allowed to draw a circle centered at one and passing through the other.

· Points of intersection of lines and circles that have already been constructed are constructed points.  (Shifrin, 1996, p. 159)

I chose to have students work with these rules because they offer a minimal set of rules for constructions in high school geometry.  This context is also very open since possibilities for further construction quickly emerge as new constructions are made.  In short, I feel that students’ mathematical environments recognizing these rules are as open as possible while remaining bound to Euclidean geometry.  Beginning with the second experiment, students will follow these rules in their constructions, and their conjectures will be made based upon such constructions.

From Free Play to Goal-directed Activity

The first of the four teaching experiments consists of free play without the restrictions of Euclidean construction.  Mathematical free play consists of undirected activity in a mathematical environment (Steffe & Thompson, 1998, p. 24).  Of course, for the experiments, this environment is constructed by the student in GSP.  Student descriptions of their constructions and actions in GSP provide information about the student’s mathematical vocabulary and use of this vocabulary.  This use of vocabulary will be an important factor in creating effective communication with the student.  Free play is also intended to help the student become comfortable and confident in the GSP environment.  Students should feel free to explore the capabilities of the program.  In this way they can identify parameters for possible constructions and become familiar with the many tools available in GSP.  

“Mathematical play, as a form of cognitive play, is a necessary prelude for students’ engagement in independent mathematical activity” (p. 25).  At least in this study, the most important role of mathematical play is that of transitioning students’ activities to ones involving independent mathematical reasoning.  By engaging in free play, students have autonomy in their actions (at least within the restrictions of actions in GSP).  It is my role, as teacher-researcher, to “subtly guide” (p. 25) students’ actions to more goal-directed activity.  My guidance is based upon the perceived mathematical curiosities of students.  After all, if the mathematical goal is not interesting to the student, it is not likely to be problematic.  Also, in order to be useful to this study, students’ actions must fit their mathematical reasoning and not my instruction.

Student Selection

I selected, with the aid of their classroom teacher, three tenth-grade students and one eleventh-grade student enrolled in Geometry.  The classroom teacher offered recommendations for these students based on student motivation, benefit to the student, and initial estimations of their geometric abilities. The teacher judged abilities based on students’ performance in the class and the van Hiele (1988) level descriptors that I shared with him in order to identify motivated students of different ability levels.  The van Hiele levels, from zero to four, are described below:

Level 0: The student identifies, names, compares and operates on geometric figures according to their appearance.

Level 1: The student analyzes figures in terms of their components and relationships among components and discovers properties/rules of a class of shapes empirically.

Level 2: The student logically interrelates previously discovered properties/rules by giving or following informal arguments.

Level 3: The student proves theorems deductively and establishes interrelationships among networks of theorems.

Level 4: The student establishes theorems in different postulational systems and analyzes/compares these systems. (p. 5)

Essentially, these levels describe the student’s framework for operating with geometrical figures.  Thus, these descriptors may identify the nature of students’ conjectures in geometry.  Although the comparison between conjectures at different van Hiele levels is not the focus of this study, working with students of different van Hiele levels should contribute to a broader understanding of student conjectures.  I used “Module 1” (pp. 17-28) from the van Hiele project in order to identify students of differing abilities.  I did not expect to find students of levels zero or four in a regular tenth-grade classroom, so I sought students of level one and level three.

Initially, I planned to work with only two students.  During my first visit with the class, the classroom teacher explained the reasons for my presence and introduced me.  I explained that I wanted to work with some of them in GSP, that we would need to meet outside of class time, and that I would offer my services tutoring them in payment.  I visited a few more times, observing students and class activities, and then, during a lab one Friday, the classroom teacher and I identified two students from his class.  A third student approached the teacher about her interest.  I spoke with each of these three students individually about the process and handed each of them a consent form.  Since all of the forms were returned by my next visit, I decided to work with all three.  

My first interview with each student, which lasted about one hour, consisted of instructions and responses to Module 1 from the van Hiele project.  Module 1 assesses students’ levels based on the classification of two-dimensional shapes.  It begins with an introductory game designed to make the interview more comfortable for students, and to allow the interviewer to familiarize himself with the students’ mathematical language.  The interview continues with discussions of shapes and sorting activities.  Students are asked to classify a set of quadrilateral cutouts into five sets, in any manner they deem appropriate (p. 21).  Next, students list properties shared by these classes, and later reduce their list to a minimal set of properties.  In all, the module is designed to reveal students’ concepts and operations on quadrilaterals and their properties (p. 1).

I used the descriptors from the van Hiele project, based on this module, to determine the levels of geometric reasoning according to the van Hieles.  This process (described in the next chapter) led me to identify two of the students as level two and one of the students as level one.  Though I wanted to have a student of level three, I decided to continue working with these three students and forego further interviews to identify others.  The next four meetings comprised the teaching experiments using GSP.  My experiences from these meetings, as well as my conceptual constructions of each student’s mathematical reasoning (at least as concerned by conjecture and plausible reasoning), are described in the next chapter.  

CHAPTER 4: SARAH

In the Fall of 1998, I began working with Mr. Jack Sarfaty’s first period geometry class.  His class met in a computer lab each week, where they used GSP to explore mathematical concepts.  During one of these lab periods, I pulled students aside (selected based on motivation, benefit to the student, and levels of geometric reasoning as described in chapter 3) so that I could explain their possible involvement in this study and hand each of them a consent form.  The three case studies in my research are based upon my experiences in working with each of the three students selected that day.

In each of the case studies, I begin by describing my first impressions of the student based upon Mr. Sarfaty’s comments and my initial experiences with each student.  Next, I demonstrate the analysis in assigning van Hiele levels for the student.  In the teaching experiment section, I attempt to illustrate a background of the student’s geometric reasoning as demonstrated in the first few experiments.  Finally, I highlight a few key instances of conjecture and supporting plausible reasoning.  These conjectures are the focus of my analysis, and are supported with experiences throughout the teaching experiments.

On the day I was selecting students, Sarah approached Mr. Sarfaty about her interest in participating in the study.  I had already spoken with the other two students when Mr. Sarfaty approached me on her behalf.  He told me that she was a good, conscientious student who wanted some tutoring.  Mr. Sarfaty also identified her as a student with high abilities in geometric reasoning.  Since the two students with whom I had spoken were identified as low or average ability and since Sarah displayed motivation in approaching her teacher about participating, I decided to give her a consent form as well.


Sarah is a tenth-grade student who turned sixteen during the span of the teaching experiments.  She receives good grades in her classes and is a cheerleader for her school.  Sarah also works part-time after school.  Since cheerleading activities were through, we were able to meet after school.  Still, some days we met during Mr. Sarfaty’s class time, on lab days.

Van Hiele Interview


My first interview with Sarah, using van Hiele Module 1, was cut short because Sarah had to work that afternoon.  We did manage to complete five sections of the module (“sorting quadrilaterals”, “listing properties”, “subclass relations”, “uncovering shapes”, and “minimum properties”) (van Hiele, 1988, pp. 17-28), and I feel that I observed enough to determine her level of reasoning according to the van Hiele level descriptors.  I had videotaped the session, and after reviewing this tape and using the van Hiele level descriptors (Fuys et al., 1988, pp. 58-71), I believe she was operating at level two.


At level two, “the student formulates and uses definitions, gives informal arguments that order previously discovered properties, and follows and gives deductive arguments” (p. 64).  Sarah’s ability to “formulate and use definitions” was apparent during the first two sections of the module, in which she quickly sorted a mixed set of quadrilaterals into five classes and offered properties of each class.  She classified the figures in the manner prescribed by the van Hieles (quadrilaterals, trapezoids, parallelograms, rectangles and squares).  As prescribed by the project, she placed each figure into the most restricted and applicable class.  Though she had one of the trapezoids in the quadrilateral class, she corrected this after her description of trapezoids – quadrilaterals that have a pair of parallel sides.  The reclassification was spawned by my question about the class of quadrilaterals: “do any of these have parallel sides?”


During the subclass relations section, it became clear to me that Sarah defined trapezoids to be those quadrilaterals with at least one pair of parallel sides.  For that reason, she made the claim that any quadrilateral could also be considered a trapezoid.  In this section of the interview, Sarah also reasoned that squares are rectangles and that rectangles are parallelograms, because they satisfy the listed properties for these classes.  This sort of response is listed as a sample in the level two descriptor section (p. 65).  


Sarah’s ability to reason geometrically, as prescribed by the van Hieles, was most impressive in “uncovering shapes” and listing minimal properties.  When asked whether a four-sided figure with two pairs of congruent opposite sides could be a trapezoid, she drew an isosceles trapezoid and claimed (referring to the bases), “those two sides aren’t equal but, if they were, it would be a square.”  The van Hieles (pp. 64-65) attributes such informal arguments to level two thinkers.  Furthermore, Sarah claimed that figures with two pairs of congruent opposite sides also have parallel opposite sides.  Though I couldn’t be certain whether this was her own conjecture or just a “fact” that she accepted from class, she re-iterated her claim later in the interview.  At this time, I asked her to draw a quadrilateral satisfying the property that was not a parallelogram.  After some time which she spent (I imagine) imagining, she said, “every thing that comes to mind is a parallelogram.”


I asked Sarah for a reason that only parallelograms could satisfy the above properties.  She began what I now feel was a deductive proof by using the side-side-side postulate on the two triangles formed by drawing a diagonal on a parallelogram.  Unfortunately, I did not pursue this line of reasoning further, though, again, I feel her arguments may have been re-productions of a teacher-guided class activity.  Either way, this implies some ability to “follow and give deductive arguments.”  For the reasons described below, I do not believe that Sarah’s reasoning was formal enough to classify her at level three.


In their level descriptors, the van Hieles also include some negative aspects of level two thinkers.  For one, “the student does not formally distinguish between a statement and its converse” (referred to as “the Siamese twins”) (p. 68).  This ability, rather, is a descriptor for level three reasoning.  When asked earlier in the interview whether a four-sided figure with two pairs of congruent opposite sides would have to be a square, Sarah replied, “well, yeah, because all of the sides are congruent, so the opposite sides are going to be congruent.”  To be sure, she reiterated this statement, after her conjecture about the opposite sides being parallel.


Although Sarah performed well enough on the “uncovering shapes” section to satisfy level two descriptors, she was not always able to “derive other properties [of shapes] from sufficient ones” (p. 69).  For example, when asked to reduce the properties she had listed for the class of rectangles to a minimal set, she finished with two – “all angles are right angles” and “opposite sides are congruent.”  She did not recognize that the second property could be derived from the first.  For these reasons, according to van Hiele level descriptors, Sarah appeared to be reasoning at level two.

Teaching Experiments


Mr. Sarfaty told me that Sarah was a conscientious student.  During our interactions in the first few teaching experiments, I also perceived that she was often self-conscious, careful, nervous and unconfident.  She seemed especially so during the third teaching experiment, when I re-introduced video taping.  So, during the fifth experiment (which I was also taping), I was especially attentive to these feelings and made conscious efforts to encourage her more and allow more quiet time for her to reason.  This last teaching experiment entailed much more geometric reasoning than the others did.  I feel this was a result of my increased attentiveness and the context, in which we took advantage of the dynamic capabilities of GSP.  I would like to examine a few conjectures from this teaching experiment in full detail, but should first provide a description of Sarah’s geometric reasoning and conjectures through the first three experiments.


As demonstrated in the van Hiele interview, Sarah understands many properties of geometric figures.  The following descriptions of our teaching experiments further illustrate this and her ability to apply concepts.  She understands, for instance, how equality of alternate-interior angles relates to parallel lines and that points on a circle are all equidistant from the center.  Sometimes she applies concepts inappropriately, as she does when she claims that slopes of parallel lines are negative reciprocals.  Her concept of the midpoint of a segment seems to depend mostly on the idea that they are created by intersecting the segment with an arbitrary line.  This conception proves useful in experiment three, but not in the last one.  She bases much of her reasoning upon appearance, but also shows the ability to visualize spatial operations such as the effect on the diagonals of a square as it stretches out into a rectangle.  The following experiment summaries are intended to display Sarah’s geometric abilities, reasoning, tendencies and conjectures to set the background for the three highlighted conjectures.

Experiment One


Our first teaching experiment took place during first period, while Mr. Sarfaty was working in another computer lab with the rest of the class.  This experiment was comprised of free play in GSP without requiring the use of Euclidean rules for construction.  To begin, I asked Sarah to demonstrate any activity that she had performed before in GSP.  Sarah had, with the help of Mr. Sarfaty’s demonstration to the class, constructed a square in GSP during a previous class lab.  She began to re-produce this construction for me in GSP.  Sarah started with a segment (presumably a side of her square) and began trying to find another side by translating the first by ninety degrees.  When she found that this was not working, she tried translating by forty-five degrees, at which time she became frustrated.  I do not feel she had developed a concept for “translating” and was frustrated because the effect of her action did not produce the desired rotation that she was imagining.  In fact, she indicated with her finger on the screen that what she had expected was a rotation of the first segment by ninety degrees.  It appeared to me that her problem was not one of constructing a square, but one of re-constructing an exercise from class that she did not fully recall or understand.  When I suggested that she might want to rotate and not translate, she exclaimed, “yeah, that’s what we did!”


This incident was partly the result of Sarah’s non-understanding of translation in geometry.  She clearly did not expect a translation to slide the whole segment in one direction.  However, her exclamation also displays her continuing tendency to imitate activities from class.  I feel this tendency is a result of her conscientious performance in class.  It seems to extend to concepts as well; whenever an aspect of the current situation fits her concept of an idea discussed in class, she attempts to apply this concept to explain the situation.  Often this involves an assimilation of the new situation, which introduces contradictions.


To illustrate, I will describe Sarah’s reasoning concerning her next construction.  I asked Sarah if she could construct a rectangle.  She attempted to construct one by rotating a given segment (as she had with the square) and dilating one side (by clicking and dragging a vertex), but found that this dilated both sides.  I suggested that she try using the translate tool this time, but when she translated a tilted segment directly upward, she observed a parallelogram.  Sarah claimed that two opposite segments were parallel because “they will never intersect.”  When I asked about the slopes of the lines, she determined that they fell the same over the same horizontal distance, but believed that this would not hold true in a coordinate system!  We created axes in GSP and counted units for rise and run, determining them to be the same, at which point Sarah admitted that her confusion resulted from the use of a formula for perpendicular lines (negative reciprocal of slope).  I feel that this error was the result of assimilating the situation into an existing concept by disregarding aspects of the situation.  However, her admission of the error seemed to follow from an understanding or accommodation of the concept.


Although many of her observations and conjectures involve immediate applications of ideas from class, her justifications (post-conjectural plausible reasoning) are more colorful.  When asked about the properties of a square’s diagonals, she claimed that they were congruent, bisect each other, bisect the interior angles of the square and intersect at right angles.  Her support of these claims involved ideas such as folding the square along its diagonals, recognizing its symmetry, and measuring sides and angles with the measurement tool in GSP.


Many of her early observations and conjectures seemed to be based upon appearance but others involved more complex operations in visualization and imagery.  For instance, she described a scissors-like effect to reason that a general parallelogram’s diagonals do not intersect at right angles.  This effect can be understood by visualizing the diagonals as a square stretches out to a rectangle and shears into a parallelogram (She did not mention the exception of rhombuses whose diagonals do intersect at right angles.). Also, in trying to prove that the opposite angles of the previously mentioned parallelogram are congruent, she spontaneously hid one of the drawn diagonals in GSP, leaving the other as the transversal in an alternate-interior angles argument.


As Sarah’s tendency to assimilate mathematical situations into (sometimes underdeveloped) concepts seen in class introduces contradictions, her tenacious tendency to apply more developed concepts to new situations was instrumental in her reasoning for this last case.  She has some ability and further tendencies to follow formal arguments introduced in class.  However, I found it difficult to determine whether her explanations were novel reasoning.  I hoped this would become less of a problem in the second teaching experiment, in which Sarah would begin working in the realm of Euclidean construction.

Experiment Two

At the beginning of our second teaching experiment, I handed Sarah a copy of the three rules of Euclidean construction, complete with illustrations (these rules are listed in chapter 3), and introduced Euclidean construction as a “game” of trying to construct geometrical figures using only three simple operations.  Sarah decided that she would first attempt to construct a triangle.  After learning the rules of the game, she was able to do this.  She identified the triangle, after its construction, formed by the two given points and a point of intersection of the two circles centered at each of the given points and passing through the other.  She also constructed a line parallel to the base of this equilateral triangle and passing through the third vertex, though she did not claim this was so.  Soon, she claimed to find a parallelogram in her constructions.  Again, this parallelogram was constructed unknowingly at first, by a network of circles, lines and points of intersections.  When I asked her how she found this, she said: “I was looking for a hexagon or pentagon when I noticed the parallel lines.”  She seemed quick to identify familiar geometrical figures and their parts.  She found kites, hexagons, right angles and parallel lines.  She seemed to notice them only after their fortuitous production, and her reasoning for their existence was based largely upon appearance.

Her reasoning also seemed undirected.  Her arguments displayed knowledge of concepts, but not a very developed line of deductive reasoning.  For example, in trying to prove angle A is right in figure 2, Sarah argued: Angles b, c, d and e are all sixty, so they add to 240 degrees, where 360 degrees makes a circle.  Thus, she determined that angles f and g are sixty degrees each.  This conclusion could have been more readily arrived at by considering that she began with equilateral (sixty-sixty-sixty) triangles.  More importantly, she did not deduce anything about angle a.  She often became frustrated by such situations (which sometimes caused her to laugh nervously) but was persistent in trying to “get it right.”
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Experiment Three

I wanted the third teaching experiment with Sarah to flow from the second one but to become more goal-directed.  So, I decided to begin by asking Sarah to try to construct in GSP a regular hexagon (as she had in our previous meeting).  She began as she had before in constructing a diamond from two intersecting circles (as in figure 2).  After this initial construction, I would characterize her state as one of disequilibrium, bordering frustration.  “I seriously don’t know how do it!” she claimed, followed by, “I just don’t like see it.  You know?”


These last statements support the claim that Sarah’s geometric reasoning is based largely upon appearance; in this case she was looking for patterns that fit her visualization of a regular hexagon.  “I basically just looked for the shapes.  Lines that connect that kind of look like it.”  This claim is further supported by Sarah’s next activity.  Once I suggested that she should try to construct a hexagon which is inscribed in one of the two circles (as it had been in the last experiment), she was able to trace the remaining four chords in one of the circles which completed the hexagon.  As the hexagon was completed by imagination (following her fingers) from the only two sides drawn, this also demonstrates Sarah’s ability to perform spatial operations in her visualizations.  She completed this construction by the same scheme, which had been successful in her equilateral triangle construction – constructing circles.  She had some trouble deciding which circles would work, but eventually found that she could use one end of an adjacent chord as center and the other end to mark the radius, in order to construct the next chord.


Later in the experiment, I asked Sarah to construct the incircle of her hexagon, which she claimed would have to touch the hexagon at the midpoint of a side.  When asked to find this midpoint, she considered the question then in return asked me, in turn, “how would you construct the midpoint?”  When she later said, “I have no clue,” it became clear to me that she found the task problematic.  Her resulting conjecture seemed to hinge upon a weak image of midpoints, but was probably a reasonable one based upon her classroom experience.


Though I am certain she understands that midpoints of segments create two congruent sub-segments, I believe her image of midpoints is grounded in her experience with points on segments, or lines passing through segments that simply appear to be at the middle of the segment.  This assumption is based upon my experience with Sarah in solving the above problem, as well as other ones of the same nature.


As shown in figure 3, Sarah successfully found a line passing through the midpoint of a side of her hexagon.  She found it by connecting points of intersection of two circles, on either side of the side of her hexagon.  Thus, her goal seemed to be to find a line that simply intersected the hexagon.  She knew the one she found passed through the midpoint, as she questioningly claimed, “because it looked that way?”  It is possible that her construction was again the result of using the circle scheme that had been successful in constructing the equilateral triangle and regular hexagon, though her statement implies otherwise.  It may be that Sarah could not describe her own intuitions (given the complexity of such a reflected abstraction, it is reasonable to assume so), but I feel that her further reasoning that she had constructed the midpoint was based upon post-conjectural observations about the circles and the appearance of the divided segment.  
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Figure 3: Regular hexagon.

One post-conjectural observation was that two of the circles share a center with the hexagon and that the others meet at this center.  She used this observation to justify that her construction indeed found the desired midpoint, but this would equally apply to other lines that could be constructed (in figure 3) that do not bisect the side.  Because I felt that such coincidences (caused by the limitation in the scope of constructible lines when given two points) allowed Sarah to eliminate perturbations too soon and too easily, I decided that we should begin the next teaching experiment (still following Euclidean rules) with three given points (a given triangle).  This also allows us to make further use of the previously described dynamic abilities of GSP.


Before examining this last experiment in detail, I would like to note one more attribute of Sarah’s reasoning.  As stated in the first section of this chapter, during the van Hiele interview I noticed that Sarah had trouble “separating the Siamese twins.”  This may contribute to her tendency to create circular arguments.  At one point in our third teaching experiment, Sarah was trying to show that the perpendicular bisector of a side of an equilateral triangle bisects the opposite angle.  She claimed this was so because two thirty-degree angles were formed.  When asked how she knew this, she referred to the bisection of the angle.  Other examples appear sporadically throughout the teaching experiments.  Experiences such as these display difficulties in Sarah’s ability to reason deductively.

Highlighted Conjectures


Sarah formed each of the following conjectures during our final teaching experiment.  I selected these conjectures particularly because they occurred in especially problematic situations for Sarah.  They also display diversity in her reasoning and are supported fairly clearly in the dialogue.  Conjectures are based upon Sarah’s constructions and may come in the form of explanations for the reliability of constructions and stated relations as well as the constructions and stated relations themselves.

Conjecture 1

At the start of our final teaching experiment, I asked Sarah to construct the incircle of a given triangle.  She immediately began constructing circles as displayed in figure 4.  When I questioned her about this, she explained that she was looking for the midpoints of the sides as she had in finding the incircle of the hexagon from the last teaching experiment.  She went on to connect with segments the intersections of the circles to the far vertices of the triangle.  When I questioned her about this action, she said she was “trying to find points that go through [the sides of the triangle].”

Figure 4: In search of midpoints.[image: image6..pict]
Already, Sarah displayed a couple of important features in her reasoning.  First, she seemed to further confirm my hypothesis that her concept of the midpoint of a segment is dominated by a visualization of a point of intersection (with a line) on the segment.  The fact that they actually bisect the segment is a secondary condition that can be satisfied incidentally and, in her experience, often is (as with the last teaching experiment).  Second, Sarah displayed an ability to draw analogy from previous experience.  I don’t believe she was explicitly aware of the analogy at first, but assumed, as with the hexagon, that she would need to find the midpoints of any figure in order to construct an incircle.  In any case, she had set the stage for the first highlighted conjecture.

The following excerpt comprised one or two minutes, beginning in the sixth minute, of our last teaching experiment.  The comments refer to figure 4 – like to the construction Sarah had just completed.

T-R:
Are any of these midpoints? [Pointing at X, Y and Z]

S:
Um… this one. [Points to X]

T-R:
Why do you think that one is?

S:
Because, um, it.  I don’t want to say it looks like it goes down the middle… [Pauses and motions with mouse at X, then traces a path around the triangle]


Because the two circles are like…


OK, the triangle is in the center of the two circles [forms a triangle with her hands] – where they intersect.

T-R:
Uh-huh.

S:
…and this point is going from where the two circles intersect [pointing to bottom intersection], or at the center of them, up to… on a straight line [tracing this line on screen with her finger]… up to the midpoint.


Because the idea that X was the midpoint did not seem problematic from Sarah (as of yet), I do not qualify this as conjecture.  However, there was a perturbation when she was asked to explain why it had to be the midpoint.  Normally, she may have remained content that it “looks” that way.  But, the situation became problematic when she decided (from previous experience) that this would not convince me.  The problem, then, was for her to develop an explanation for the construction, as she had with previous constructions.  Though at first her goal was to satisfy my question, I feel that Sarah was set at disequilibrium in trying to develop a reasonable explanation.  Her conclusion seemed to eliminate the perturbation, and, when I questioned her about it, she re-iterated the conjecture confidently.  After my next question (below), she focussed on other (previously disregarded) details of the construction.  Still, I wanted her to explain why these details, present with the other sides of the triangle, did not yield midpoints.

T-R:
Why doesn’t that work for the other two sides?

S:
Because they are not special [laughs].

[Long pause]

S:
Well it’s going from like… [Another long pause]

This has got to be the center [pointing to X] because this point right there is the center of this circle; this point right here is the center of that circle; and, this point right here is the center of that circle [pointing to A, B and C and tracing respective circles with her finger].  So… and then… point it intersects…

This line… and then it just connects down to the intersection of these two circles.

T-R:
If that works for that one, why doesn’t it work for the other ones?

S:
Um… this right here [tracing segment AZ’ with her finger]… this point [pointing to Z’] that makes these two lines connect [pointing to points A and Z] – the segment… um… It’s not the center of any one of the circles.  It’s just like out there.

[I asked Sarah to clarify]

S:
See.  This one’s in the center [pointing to A and, presumably, referring to it as the center of a circle], but this one’s not [points to Z’].  And so, when they connect, they’re not going to be… um… Like this is the midpoint [makes unclear gesture at screen].  It won’t make it the midpoint because that one’s in the center [A] and that one’s not [Z’].

T-R:
OK.  And look at the one that is at the midpoint.

S:
Um… It could have been the intersection of the circles [pointing to X’’].  This one’s not pointing to Z’ and then seeming to notice Z’’]… hmm…


Over and over, Sarah searched for details that differentiated the one side from the others.  Eventually, this did lead to reasoning about the circles themselves and their relative sizes.  Still, there was another flaw in her construction of the midpoint.  The recognition of this flaw caused a perturbation that, in turn, led to a second major conjecture.

Conjecture 2


I asked Sarah to explain what would happen if we were to move top vertex (C, in the same figure 4) in the triangle, to which she replied that CX’’ would still pass through the midpoint of AB.  When I instructed her to move the point, her surprise indicated a perturbation.

T-R:
Do you think that it [referring to CX’’] would still go through the midpoint?

S:
[nods and moves C, as instructed, to the right]


Whoa!  It doesn’t go through the midpoint any more.  Um… all of the circles moved.

T-R:
So when do you think it goes through the midpoint, and when doesn’t it go through the midpoint?  You can move it [referring to vertex C again] around if you want…

S:
[moves C back to original position]


It seems to go through the midpoint when it’s like this… equilateral… not equilateral…


You know.  When it… I don’t know.  When the circles are all, like, this way.  


[Traces circles with finger]

T-R:
OK.  How are they?  You were about to say it’s an equilateral triangle.  Do you think it’s equilateral?

S:
Yeah?


[Spontaneously begins moving the vertex again: down a little, left, up-left, down-right, up through Q]

T-R:
OK.  Where else do you think you can put that point and it would still go through the midpoint?

S:
I could put it up higher… [Continuing her motion up with the vertex and then back down]


If I go up, it goes through the midpoint.  If I go over [while moving the vertex left] it doesn’t.  I think it has something to do with the green [top] circle because it’s the only one moving.


Sarah’s first reaction after the perturbation (following the “whoa!” exclamation) seemed to involve a re-examination of the construction.  This fits Piaget’s model for assimilation leading to perturbation, as follows.  She had ignored particular aspects of the situation in order to assimilate it into an existing scheme.  When she observed a result different from that prescribed by the sheme, this led to the re-examination.  

Sarah’s reasoning, at this point, seemed to rely upon her visualization – this time focusing on the circles.  She states that “all of the circles moved.”  After further examination, she notices that “[the green circle] is the only one moving.”  This last statement could be considered the result of an observation and not the result of conjecture, but this “observation” seems to alleviate the perturbation for Sarah.  Furthermore, it seems that Sarah’s observation about the circle led her to identify the locus of points for the vertex which satisfy the requirement for finding the midpoint.  I feel that Sarah’s actions were a result of perturbation and, as such, demonstrate her pre-conjectural plausible reasoning.


In coordination with focusing on the changes in circles to explain the phenomenon, Sarah spontaneously returned to the previously suggested activity of moving a vertex.  This action helped her to visualize the effect that the vertex position had on the situation.  In this visualization, she focussed on the circles because she had previously conjectured their importance in the midpoint construction.  This action of focussing on the circles while moving one vertex appeared to be an intentional response to the perturbation.  It also led to her conjecture about the importance of the green circle.  As such, it served as plausible reasoning and relied heavily upon visualization.

Conjecture 3


Once Sarah constructed a segment that she was convinced would always pass through the midpoint of side AB, I asked her to find the midpoint of a second side.  Sarah has previously drawn the analogy of using midpoints to find the incircle of the triangle from her experience in finding the incircle of a regular hexagon.  Once again, I feel that Sarah relied upon the analogy of finding the midpoint of one side in order to find the other.  I use the term analogy because it was evident to me that she reasoned in the following situations as if it were only like the situation of finding the midpoint of the first side.  She could not be using a scheme as if the two situations were isomorphic because she had not yet developed a scheme for finding midpoints of sides.  Instead she used a few ideas from the recent construction.  Still, she had trouble following the analogy, which only further supports my claim that she was not using a scheme.


The following script takes place as Sarah tries to find the midpoint of CB, as illustrated by figure 5.  For practical reasons, I have substituted a thin circle for what was a pink circle; a dashed circle for the blue one; and a thick circle for the green one.

S:
Um… [Points to the left-most intersection of the thick and thin circles]  This conn–- [sighs]  Cause see it [referring to the bisector of segment AB] goes from the intersection of dashed and thin down to the intersection of dashed and thin.  But, see thin and thick to the intersection of thin and thick [pointing to these two intersections, in turn] doesn’t connect the midpoint [presumably referring to that of segment CB].

T-R:
OK.  So how can you fix it?

S:
Construct another circle?

Sarah had demonstrated, by considering the intersections of circles, an impulse to draw an analogy from her recent construction of the midpoint of segment AB.  Also, she was inclined to use her scheme of constructing circles about the triangle, which had been successful in the past.  After a brief interruption, we returned to the problem, and Sarah returned to these same aspects of reasoning.
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Figure 5: Intersections of circles.

T-R:
Now, how can you find the midpoint of one of the other sides?

S:
I think you have to go from the intersections of two circles.  Like, see this one’s dashed and thin [pointing to the intersections of the two circles]; that one’s dashed and thin.  And, thin and thick [pointing to the intersections of these two circles] and thin and thick.  But I already know that’s not…[frustration].

T-R:
OK.  So thin-thick didn’t work…

S:
No.

T-R:
What do you think would work?

S:
Um… um… I’m going to try drawing another circle.


Sarah became frustrated once more when her new circle seemed to overlap the thick one.  Once again, however, she has used the same aspects in reasoning: drawing from the analogy of her recent midpoint construction, and using circles.  After another small interruption, we begin where Sarah had become frustrated.  Notice that Sarah’s first response implies that finding the second midpoint is, indeed, a new situation for her.

T-R:
I think you can do it.  You did one of them…

S:
I know, but that one was easy.

T-R:
What was special about it that made it so easy?

S:
Because those two circles are the same size [pointing to the thin and dashed circles].  This one’s just an odd ball [pointing to the thick circle].

T-R:
How did you get those circles to be the same size?

S:
I constructed them on those two points [pointing to A and B].

T-R:
Uh-huh…

S:
I don’t know what else to do.


As Sarah was getting frustrated once more, I intervened and eventually Sarah was able to construct the desired midpoint (in steps that were within her “zone of potential construction”).  It is worth noting that, when we began to construct the final midpoint, Sarah had more confidence but experienced some of the same frustrations.  Though she had the inclination to draw from analogy of similar experiences, she seemed unable to carry it through.


However, Sarah did successfully employ (after a few trials) her scheme for constructing circles.  Also, she was able to single out variables, such as relative sizes of circles to identify aspects of the situation that were necessary conditions in finding the midpoint of a side.  This, in itself, constitutes conjecture and altered the problem to one of finding the right circles for the midpoint of the second side.

Summary


I have said that Sarah seems careful, nervous and unconfident during our teaching experiments.  However, she seems more confident when she is engaged in activities which are related to experiences in her geometry class.  Thus, she tends to assimilate present situations into existing concepts developed through classroom experiences, though some of these concepts are underdeveloped.  This was the case in trying to prove parallel lines using a negative reciprocal relation in the slopes.  But, she becomes excited when these concepts do work (“Yeah, that’s what we did!”).  Such successes seem to encourage her and may contribute to her affinity for analogy.


Like to her attempts of assimilation, Sarah has tenacity for drawing analogy.  When she is faced with a novel problem that she cannot readily assimilate, she finds aspects of the situation that do fit past experience.  This was certainly the case in finding the incircle for the triangle (drawing analogy from her experience with the hexagon) and once again in finding the second midpoint of the triangle (drawing analogy from the first midpoint construction).  This strategy (like assimilation) does not always eliminate the perturbation, but often allows Sarah to alter the problem.  In this sense, her analogies serve as conjectures – they attempt to eliminate one perturbation by replacing it with a simpler one.  In the first case, she redefines the problem to one of finding midpoints.  In the second case, Sarah shifts the perturbation to one of finding the correct circles.


In trying to eliminate the perturbation in the third highlighted conjecture, Sarah conjectures via analogy, “I think you have to go from the intersections of two circles.”  This analogy is a necessary conjecture in her eventual elimination of the perturbation.  She also uses her scheme for constructing more circles; after all, this scheme was successful in previous problems.  What is most notable about this case is that, after being distracted from her thinking, she returns to the problem acting in the same manner (the analogy of intersecting circles followed by the scheme of constructing more circles) as if these actions were novel.


Even before Sarah can attempt to assimilate, draw analogies or use schemes in a problematic situation, she must first visualize the situation.  Initially, she relies upon observation, as with her claim in finding the midpoint of a side.  This claim was justified “because it looked that way.”  She also scans for recognizable patterns as with the problem of constructing a hexagon: “I basically just looked for the shapes.  Lines that connect that kind of look like it.”  Here, her visualization includes some sort of spatial operation that allows her to identify and trace patterns.  With the problem of constructing the midpoint of a side of a triangle, she says that she was “trying to find points that go through.”  In each of these last two cases, she tries to identify, through visualization and spatial operations, patterns that fit her image of the desired construction.


Though her observations do not constitute conjecture, the visualizations that include operations such as scanning allow her to form relations and dependencies.  This occurs in her second highlighted conjecture.  In this case of determining when her midpoint construction works, Sarah visualizes the motion of the three circles as she moves a vertex.  This visualization affords her a conjecture: “I think it has something to do with the green circle because it’s the only one moving.”

When she can’t find a relation, she says things like, “I just don’t see it” and becomes frustrated.  At these times, her reactions sometimes resemble Piaget’s model of perturbation leading to a review of previously disregarded aspects of the situation.  As with conjecture 1, Sarah then visualizes the situation with the goal of finding distinguishing features in the construction.  She conjectures that her midpoint argument works for the one side because the supposed bisector goes “from where the two circles intersect” following up “on a straight line.”  When this doesn’t seem to satisfy the condition, she cites various aspects about the positions of the two points forming the supposed bisectors.

 So far I have mentioned Sarah’s pre-conjectural plausible reasoning, though it is difficult to differentiate between the two (pre-conjectural and post-conjectural plausible reasoning) sometimes.  In many instances, Sarah’s post-conjectural and pre-conjectural plausible reasoning overlapped.  Most notably, her conjectured constructions that relied upon peculiar or distinguishing features of the construction were used to support these conjectures, until the situation became problematic again.  This was the case in Sarah’s second conjecture, where she claims of the constructions not yielding midpoints, “It won’t make it the midpoint because that one’s in the center and that one’s not.”  When asked to consider the successful construction, which had this same property, she was once again at disequilibrium.  In this last case, she refers to the intersections of the two circles that she used in her conjectured midpoint construction.  She refers to the distinguishing features of these points now to support why the first conjecture worked.  While her supporting argument is a conjecture in itself, it also serves as post-conjectural plausible reasoning for the conjectured construction.  Other post-conjectural plausible reasons rely upon spatial operations such as a scissors action or a reflection, which may or may not have been instrumental in her conjecturing.

CHAPTER 5: GRAHAM

The first event I can recall of my experiences with Graham took place in one of Mr. Sarfaty’s Friday computer lab sessions using GSP.  After completing the prescribed constructions for the lab, I observed Graham drawing faces to a few polygons.  He seemed somber in doing this and unconcerned with the opinions of anyone in the class (myself included) on the matter.  In fact, Graham often appeared set off from the rest of the class.  He is very quiet during class, but attentive and docile.  In the computer lab, he always selects the same computer, which sits on the end of a row.  He looks different from most of the students, too.  He has long straight hair that covers the top of his back and rarely changes his relaxed or even tired expression.

Mr. Sarfaty identified Graham as a student of low ability, but one he deemed motivated enough to want to participate in the study.  So, on the day that I decided to approach students, I approached Graham.  He didn’t show much of a reaction to my invitation, but said that he would be interested.  He also volunteered that we could meet during his sixth period independent study course.  I would later approach the supervisor of this course for her permission.

In my conversations with Graham, I learned a few surprising details.  First, I found that he is a year older (seventeen) than the other students in the class, because he was held back one year in school.  This did not surprise me too much because Mr. Sarfaty had told me he had low abilities in mathematics.  But next, Graham told me that he is active in Odyssey of the Mind – a team of students who compete in solving creative scenarios.  Finally, Graham would often talk about his experiences with his brother in developing graphics for video games.  He described these graphics as three-dimensional figures, which often included spheres and cubes.  At first, these experiences seemed to be the only ones that were interesting to him.  In fact, his independent study topic is related to three-dimensional graphic game design.

In addition to Graham’s computer graphics experience, I learned that he also had an interest in fractals and had looked at examples of them on the Internet.  Though Graham never showed a great deal of excitement about geometry, he seemed very interested in learning more about fractals.  His experience with them so far seems to have affected his geometric reasoning.  In several instances throughout the teaching experiments, he seemed drawn to continue patterns indefinitely.  Sometimes these involved similar figures being replicated inside of themselves over and over.

As far as his mathematics courses are concerned, Graham blames his past teachers for his poor performance.  He told me that Mr. Sarfaty was a good teacher (though he doesn’t perform very well in Mr. Sarfaty’s evaluations either), but that he had a long string of mathematics teachers that he did not like.  While he was never specific about the reasons for his opinions, he told me on one occasion that he “despises proofs.”

Van Hiele Interview


Graham and I held our first interview during sixth period one Friday.  From the beginning of the interview, I noticed that Graham had not developed the common vocabulary for geometrical properties and relations.  For instance, when he referred to the angles of a polygon, he would usually call them “sides.”  Still, he rarely referred to angles, parallel lines or congruent sides.  Rather, he seemed more inclined to consider the shapes as a whole.  This was most evident in the “listing properties” section of van Hiele Module 1 (Fuys et al., 1988, p. 22).


Module 1 includes some sample responses of students who were asked to list properties of different classes of quadrilaterals.  Sarah and Diane had responded with properties of the same nature: “opposite sides are congruent,” “all angles are right angles,” etc. (p. 26).  However, few of Graham’s responses even resembled these.  When asked to list properties of squares, he responded that “you can form a box from taking six of them.”  This is not in-line with the reasoning measured by the van Hiele modules.  In fact, being a property of the shape “as a whole” (p. 58) might qualify this as a level zero statement.  But, I do not believe that Fuys expected such responses from high school geometry students.


Later, Graham indicated that a parallelogram could be sheared and still remain a parallelogram, though he did not use the term “shear.”  Rather, he motioned, with his hands in the air, the sliding of a side in a direction parallel to the side.  Most of Graham’s remarks seemed to involve a transformation like this.  He indicated lines of reflection on squares and rectangles.  Even his “box-forming” property could be considered a transformation of the squares.  Still, the van Hiele modules do not account for such transformations.


Many of Graham’s properties were negative.  He claimed that you could not form a box from six identical rectangles and that the shearing property did not hold for squares or rectangles.  These negative properties made the “subclass relations” section interesting as well.  Because of his stipulation about rectangles not forming boxes, squares (which do not share this negative property) cannot be considered rectangles.  Likewise, rectangles could not be considered parallelograms because they cannot be sheared and remain rectangles; they are too well formed.


Graham did not seem to place any value on the trapezoids, which have only one pair of parallel sides, except for the isosceles trapezoid that he recognized as having a line of symmetry.  This was also the first property he noticed in kites.  His responses here indicated that he could “formulate properties for a set of figures (indicating level one thought)” (p.27).  After being shown examples and non-examples of kites, he was able to identify other kites from a mixed pile of quadrilaterals.


I struggled in trying to identify a van Hiele level describing Graham’s responses.  Though he appeared to be visualizing complex transformations and identifying them as properties, he did not “formulate and use definitions” (p. 64) to define the classes to which they applied.  For example, his shearing property of parallelograms (the only property listed for them) applies to the general class of quadrilaterals too and to trapezoids when shearing the parallel sides.  Thus, I did not feel that his reasoning satisfied level two reasoning.


Though he did not “use appropriate vocabulary for components and relationships” (p.60), he did demonstrate some informal reasoning about the figures in “listing properties” and “subclass relations.”  So, I did not feel comfortable using level zero as a level descriptor for Graham.  Most notably, Graham was able to “discover properties of figures empirically and generalize properties for that class of figures,” (p. 61), as with the kites.  Therefore, I evaluated Graham’s reasoning concerning the module as level one.

Teaching Experiments


During our teaching experiments, Graham seemed to be concerned about my impression of him, though he did not seem to lack confidence.  He would ask me after the interviews what the other students were doing, apparently trying to find out where he fit in.  Like Sarah, he seemed self-conscious, but he compensated for this with a matter-of-fact attitude in the teaching experiments.  Often, this made it difficult to determine whether his statements were observations that were taken for granted or conjectures with which he was concerned.


Graham owns a well-developed concept of symmetry (at least reflections) and readily recognizes lines of symmetry in common geometric shapes.  In fact, his concept of these shapes seems to depend upon such spatial operations.  Though he recalls facts from class, such as the equality of vertical angles, he does not tend to use them or reason why they might be true.  In fact, his geometry seems almost entirely visual.  Still, spatial operations in his visualization (such as symmetry) afford him the ability to recognize figures and properties such as that of a midpoint, a bisected angle or a perpendicular line.  The following teaching experiment descriptions are intended to provide a background for the two highlighted conjectures.  The experiences that I am describing include elements of his conjectures as well as his geometric reasoning in general.

Experiment One

At the start of the first teaching experiment, I invited Graham to show me what he could do in GSP.  He started by constructing an equilateral triangle and a square using rotations.  He began with a line segment and used the rotation tool in GSP with the appropriate angles of rotation (sixty and ninety degrees, respectively).  Though Graham, as well as Sarah, had performed these constructions in class, Graham seemed to recall them readily because of his well-developed spatial operations.  Later, he constructed a median of the triangle by using GSP’s midpoint tool and connecting it to the opposite vertex.  He observed that it was the perpendicular to the bisected side.  He justified this by referring to the equal tilt from the base angles (of the bisected side).  He described this tilting as a motion that he demonstrated with his hands, from right angles at the base to smaller angles until the sides intersect.  I believe he understood this through the symmetry of the two sides, in which he could visually fold the figure creating two right angles at the base of the median.  Since his vocabulary was very informal (and often ambiguous), I relied upon his interaction with GSP and hand gestures to determine many of his ideas.


Most of Graham’s statements about geometric relations, especially early on, were based on appearance.  He made one such statement concerning the centroid of an equilateral triangle as one vertex followed the path of a circle.  Here, he had constructed the centroid from the intersection of the three medians of his equilateral triangle.  I showed him how he could use the animation tool to move a vertex of his triangle around a circle, and how to trace the centroid.  He seemed very interested in this animation, and after observing the motion for a little while, he claimed that the locus of the centroid formed a circle with half of the radius of the circular path.

Graham believed that the perpendicular bisector property of the medians would hold for all triangles.  This is one example of Graham’s tendency to draw conclusions from a single case.  This reasoning is referred to by Pierce (as discussed in Chapter 2) as abduction.  When I asked Graham to construct an arbitrary triangle on which to test his conjecture, other misconceptions became apparent.

Graham began drawing his arbitrary triangle by rotating a given segment seventy-three degrees.  I feel that Graham understood that an arbitrary triangle would have no special angles (such as sixty or ninety degree) or side relations, which is why he used seventy-three degree for his rotation.  However, he did not seem to realize that his rotation of the segment would create an isosceles triangle.  When he successfully drew his arbitrary triangle by segments and an associated median, he found that his property for medians did not always work.  Once he realized this, he disowned the conjecture without reasoning why his conjecture had failed, as if he had never made it.  In fact, Graham sometimes denied that he ever made a particular conjecture when he encountered a refutation of it.

Experiment Two

In this second teaching experiment we worked with the rules of Euclidean construction.  I simply asked Graham what he could do with them.  He constructed a network of lines and circles as depicted in figure 6.  This network was completed through repeated use of the three rules for Euclidean construction.  He seemed to enjoy these constructions as he continued to expand the circles and lines outward.  He noticed a particular, flower-like pattern to these lines and circles (as captured in the bold circle in figure 6).  Graham did not make the circle bold as I have in the figure, but did seem to focus on the points on this circle to identify the inscribed regular hexagon.  While he did not use the words “inscribed” or “regular,” he did recognize the pattern before its actual construction, by connecting adjacent vertices.
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Figure 6: Flower pattern.

He seemed to want to continue to tile the plane with the equilateral triangles formed from the intersections of congruent circles and the line passing through their centers.  From this pattern, he recognized a figure that he claimed was a kite.  When I asked Graham to justify his claim, he referred to the line of symmetry.  In order to test this symmetry, he began to measure the pair of angles that would be reflected along the line of symmetry.  This was the first time that Graham mentioned angles in his reasoning.  When he found that the angles were not congruent, he reasoned that he must have “missed one of the triangles” in his pattern that led to the kite’s construction.


Graham had a tendency to continue patterns, as he did with the circles, lines and triangles.  In his hexagon construction, he noticed the circle inscribing it (the bold circle in figure 6).  He also noticed that this pattern could be continued indefinitely.  Though he was unable to construct the hexagon inscribing the circle, he was able to construct the circle inscribed in his hexagon.  He seemed to take for granted that this circle would share the same center as the bold circle and would pass through the midpoint of a side of the regular hexagon.  I imagine he relied upon symmetry to conclude this.  He connected points A and B (in figure 7) to find this midpoint.  Once again, he displayed his ability to visualize the desired construction, though I am unsure how he identified the segment AB as the bisector of the side.  There are at least a few possibilities, but I suppose that he recognized the line AB as a line of symmetry for the hexagon.
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Figure 7: Midpoint on hexagon.

Experiment Three


I began the third experiment by asking Graham whether he could construct a kite, as he had claimed to construct in the second teaching experiment.  He identified, rather quickly, the “diamond” formed in the intersection of two circles (labeled ABCD in figure 8).  This construction was the result of a pattern of lines and circles much like that of the last experiment.  He also recognized a second kite (A’B’C’D’), but could not be sure that it was a kite because one vertex (C’) was off the bottom of the screen.  Before scrolling down to see this vertex he said, “actually, that probably forms another kite.”  After he was able to see the entire figure he claimed, “that’s also a kite.”  Once again, this demonstrates Graham’s dependence upon appearance.

[image: image10..pict]
Figure 8: Big diamond.


When I asked Graham to explain why the figure would have to be a kite he relied upon spatial operations, which he demonstrated (seemingly unconsciously) with his hands as he described them.  He referred to lines of symmetry in the kite as a “folding” and would fold his hands in from facing up to facing each other.  Though this reasoning was post-conjectural, he seemed to recognize the symmetry in figures immediately.  This seemed instrumental when he spontaneously began constructing more kites.  Still, all of these kites were diamonds, which he seemed to associate with having two lines of symmetry through opposite vertices.  To test this working hypothesis, I asked Graham if he could construct a kite that was not a diamond (rhombus). 

Before describing Graham’s actions in meeting the new goal, I interject with Graham’s explanation of his terminology.  When I introduced the term “rhombus” for shapes that he had been calling diamonds, he thought for a moment and then interrupted me to explain the reason he did not recognize the diamonds as rhombuses; when they are on their side, he thinks of them as rhombuses, but when they are vertical he thinks of them as diamonds because of the way the shape is depicted in cartoons.  This only reinforced my belief that Graham’s geometry was nearly entirely visual.  It also demonstrates that his geometrical development arises through experience, much of which is animated (as with the cartoons and video games).

Graham seemed to have made an abduction, from his first construction of a kite, that all kites have two lines of symmetry.  I feel that he would have continued to construct only rhombuses, as he had begun to, if I had not questioned this assumption.  In fact he was able to recognize that A’EC’F (in figure 8) was a kite and constructed the segments forming it.  When I asked him whether it had two lines of symmetry, he modified his definition: “actually, that one doesn’t have two lines of reflection.  It [a kite] has a minimum of one line of reflection.”

Graham continued by trying to find some relation between the angles of the kites.  This goal led to the first highlighted conjecture.  When I asked him what sort of relation he was expecting, he brought up another idea.  He drew a partial analogy to a relation that he learned in class.  His reasoning for this relation is the focus of the second highlighted conjecture, from the next (and last) teaching experiment.  What interested me here was Graham’s method for remembering the relation.

The relation to which Graham referred was that the sum of two interior angles in a triangle is equal to the opposite exterior angle.  Though, after a few minutes in consideration, he was unable to explain why this works (and I did not press him to do so), he did explain how he recalls the relation.  He described a “bouncing” to designate the angles involved.  He said he thought of this as following a side of the triangle from the exterior angle to one of the interior angles and then “bouncing up” to the other interior angle.  Mostly, it interested me that his spatial operations were also instrumental in recalling facts. 

Highlighted Conjectures

In each of the last two teaching experiments, Graham developed compelling problematic situations that he attempted to resolve through conjecture and plausible reasoning.  The first one seems to result from an abduction.  Graham eventually finds a counter-example to this generalization.  In the second case, I wanted to see if he would reason deductively in explaining a situation from the previous experiment.  Graham eventually formed a deductive proof (the first I had seen from him) to explain the relation.  The plausible reasoning of these conjectures is the focus of the next two sections.

Conjecture One


We were a few minutes into the third teaching experiment when Graham observed that the top and bottom angle measures of a particular rhombus added to the measure of a side angle.  He found this relation by measuring the angles of the kite, which was formed from two equilateral triangles (ABCD in figure 9).  He had also found, through measurements, that this relation did not work for the non-rhombus kite ABC’D.  When asked whether he could construct a rhombus that was not made of equilateral triangles, Graham referred to A’BC’D, but did not construct it yet.  Once again he relied upon reflecting across a line of symmetry (BD) to visualize the desired rhombus.

Once he had identified the rhombus, I reminded Graham of the relation that he had found.  I also reminded him that it had worked for the rhombus formed from equilateral triangles, but had not worked for the non-rhombus kite.  The following dialogue begins after I asked Graham whether the relation would hold for the rhombus not formed from equilateral triangles.
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Figure 9: Slender diamond.

G:
Yeah.  It should.  Since… um… I mean the main thing is it doesn’t matter if they’re equilateral.  It just matters if they’re the same shape on either side when it’s reflected.  [Side comment]

T-R:
And if you add the top and the bottom one?

G:
It will equal the side.  So the top and the bottom angles are always half of the side.  [Measures the bottom angle] 

21.8… 21.8.  It would make the side ones [calculates in his head for a moment] 43.6.


Graham had observed just two cases of his relation: one in which it worked and one in which it did not work.  I believe the question of whether his relation would work for the new rhombus was problematic for him.  He claims that the relation “should work” for the new triangle indicating some uncertainty.  He also spontaneously offers some support for this argument.  Based on just one example and one non-example of his relation, Graham had formed a conjecture for the entire class of rhombuses, though I only asked about one case.  It seems that, between non-rhombuses and rhombuses formed from equilateral triangles, he felt that the new sub-class of non-equilateral-triangular rhombuses shared a key property with the latter, which made the relation work.  He believes that it is the fact that the kites are the same on the top and bottom that is crucial.  When he restates his claim in his second statement, he sounds more convinced.  Thus, I feel his identification of the “key” property is plausible reasoning.


Graham continued by actually constructing the rhombus in question.  He did this by mimicking above BD the construction that is below BD.  In this manner, he found A’.  I found it interesting that he, then, measured the angle at A’ to ensure that he had found the correct point.  He claimed that if it were not 21.8, he would know that he had the wrong point since it is reflected from the bottom angle (which he measured to be 21.8).  Even now, he did not seem to notice the fact that the side angle was obtuse and could not measure 43.6 as he conjectured (of which he seemed quite sure).  The dialogue continues as he measures the side angle.

G:
And then those are… 158.2 [Now mumbling] 158.2


[Leans back and folds his arms, staring at the screen expressionless]

T-R:
It’s supposed to be 43.6, right?

G:
No.  That was if it’s a diamond.

T-R:
This is a diamond.

G:
If it was a equilateral diamond.

T-R:
It doesn’t work unless it’s equilateral.

G:
Right.


Graham appeared very troubled when he found the angle did not measure 158.2.  It seems that he was convinced the relation would work for all rhombuses based on just one case.  He further supported this abduction by identifying the key property of rhombuses that made the relation work: “they’re the same on either side.”  This observation served as nearly unshakable reasoning for his conjecture.  He ignored the fact that the angle, which was to measure 43.6 degrees, was obtuse.  He also did not consider there to be anything particular to rhombuses formed from equilateral triangles that would distinguish them in this relation.  Only the measurement of the angle is strong enough material for him to alter his conjecture, now stating that the relation only works for “equilateral diamonds.”

Conjecture Two


I felt I had learned a lot from Graham up to the fourth and final teaching experiment.  His visualizations and spatial ability, as well as his reasoning throughout the experiments (especially in the third one) impressed me.  Still, I was unsure whether he could or would reason deductively.  I begin the last experiment with a simple construction of an arbitrary triangle, with its sides extended to lines (as shown in figure 10).  I then asked Graham to identify any particular relation amongst the angles that he felt were worth noting.  I was particularly interested in whether he would deductively reason why the exterior angle relation (mentioned in the third experiment) worked for all triangles.  I was aware that this may take a lot of time and patience, but was willing to spend the entire fourth experiment to find out whether he could deductively reason this on his own.  The following dialogue begins as Graham states the relation and starts to explain why it works.  References to angles and sides indicate the labeled triangle in figure 10.

G:
All it is is that if you add that angle and that angle, it equals that angle [indicating the interior angles at N and X, and the exterior angle to the one at A, respectively].


Actually, I suppose…[Long pause]


Probably partially because those…[Long Pause]

I think it probably has something to do with…  Uh… 

Like objects on a line will add up to 180.  Since that equals 360 [indicating the space around the line through A and X].

T-R:
[Side discussion to clarify the angles and sides referenced.]

G:
It could be partially due to the fact… both these lines [indicating the ones through AX and NX] originating from a single point [X].  So this angle [referring to the interior angle at X] would have to be…[Pause]


Partially due to the fact that if you see this as the line that has 360 [traces the line through AX with the cursor].


So all this [motions with cursor to one side of AX] has to be 180.  Then this angle [pointing to the interior angle at A] which you don’t really count towards the total would have to be subtracted from the remainder right there [referring to the top exterior angle at A].  Which means that when you add these two together [indicating the interior angles at N and X] they’ll add up to less than 360 – minus angle A

T-R:
360?

G:
Er… Yeah, 180 minus that [referring to the interior angle at A] will equal those two [the interior angles at N and X] when you add them together.

T-R:
So, what does that have to do with the exterior angle?

G:
Actually, I guess that is about it.

It would actually be better to go by that one [pointing to the line through AX] and then focus on this angle [points to A].

180 minus this angle [measures the indicated angle A] will equal the sum of the angle N and X.  [Begins to label A, N and X].

T-R:
How do you know that?

G:
Because all triangles equal 180.

The sum of those [the exterior and interior angles at A] is 180, and the sum of those [the interior angles at N and X] is 180-A.
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Figure 10: Arbitrary triangle.


Graham’s first statement of his reasoning could be considered a conjecture in itself.  He claims that the relation is somehow due to the fact that straight angles measure 180 degrees.  The reasoning behind this conjecture is uncertain.  Perhaps it follows from his visualization of exterior angles; he may imagine them as supplements to interior angles, which form a straight angle.


Before Graham returns to the straight angle argument, he examines at least one other property: two of the lines are originating from a single point.  I cannot determine the relevance of this statement except to note that Graham appears to be looking for any properties that might explain the exterior angle relation.  It is only after noting this last property that he returns to the straight angle argument.  Again, when he returns to this argument, it seems to have been re-structured and more deductive.


Graham continues to reason deductively as he determines that the measure of the exterior angle at A is the remainder of 180 degrees after subtracting the measure of angle A.  This last step is crucial in successfully completing the argument.  This is the idea that seems to relate the exterior angle to the interior angles of the triangle.  Thus, it is important to understand how Graham was able to make the transition visualizing properties to drawing logical conclusions from those properties.


I believe there are two particularly important factors in Graham’s transition.  First, I feel that he was very aware of the goal – to explain the relationship between the exterior angle and the sum of the two opposite interior angles.  I feel that he was so aware because the situation was problematic for him, and he was interested in finding a solution.  Second, I believe Graham’s image of exterior angles was based upon visualizing the supplement of an interior angle.  This visualization, then, is likely to resemble his visualization of a straight angle divided by another line.  Hence, when he observed the appropriate straight angle in the drawing, it may have triggered his image for the exterior angles.  Since he was conscious of his goal to relate this exterior angle to the interior angles of the triangle, he used this image to relate the exterior angle of interest (the upper exterior angle at A) to an angle in the triangle (the interior angle at A).  This hypothesis is supported by Graham’s explanation that he was confused at first, because he was looking at the wrong line.  “It would actually be better to go by that one [this line passing through A and X] and then focus on this angle [the interior angle at A].”  Visualizing the straight angle of this line containing that angle made the relation between the exterior angle and interior angle at A more natural.


Graham’s next statement demonstrates that he has simultaneously removed the measure of angle A from the straight angle and the total angle measure of the triangle: “which means that when you add these two together, they’ll have to add up to less than 360 minus angle A.”  Graham soon corrects himself to say, “180 minus [angle A] will equal those two when you add them together.”  His first statement implies that he has removed angle A from the triangle sum.  I feel that this was, once again, a visual operation.  He seems to be visualizing both the triangle and the straight angle after removing the interior angle at A.  When he corrects himself on the angle sum of the triangle (in the second statement), he is able to see the relation between the two visualizations of remaining angle measures.  Thus, he is able to relate the two concepts – straight angles have 180 degrees and triangles have 180 degrees – in this particular situation.  This new relation completes his deductive proof.

Summary


I noted early on that Graham’s geometry seemed entirely visual.  By this, I mean that his reasoning was based upon visual observation and spatial operations on visualizations.  Whereas Sarah tended to apply relations between properties of figures (such as alternate-interior angle equality), Graham rarely referred to properties such as angles until the last couple of experiments.  Rather, he visualized the figures as wholes and operated on them using transformations such as rotations and reflections.  In fact, his first constructions (that of an equilateral triangle and square) relied upon the use of rotations.  I feel his ability to complete these constructions demonstrated his spatial abilities in visualizing the rotations involved in the two constructions.  These spatial operations were often instrumental in Graham’s conjecturing and plausible reasoning, but were sometimes problematic as well.


In trying to create an arbitrary triangle, Graham rotated a segment 73 degrees.  He seemed surprised that this rotation appeared to form an isosceles triangle.  Immediately, he began a different attempt at drawing the desired triangle.  I believe that appearance, then, is a more credible source of information for Graham than his own spatial operations.  Thus, many of Graham’s statements were observations based upon appearance.  For example, he would not conclude that his kite construction was indeed a kite until he scrolled down on the screen to see the bottom vertex.  Though, I believe Graham had the ability to visualize the completed kite, actually seeing the whole figure made the statement more plausible for him.


Graham did eventually begin to consider angle measures more in his arguments.  Where angles were concerned, he placed even more credibility upon measurement than appearance.  This was most evident in his conjecture about the sum of the top and bottom angles in his non-equilateral-triangular rhombus. There was clear evidence in his visual field that the side angle would have to be much greater than the sum (43.6 degrees); in fact, this side angle was obtuse!  Still, Graham’s conjecture was only refuted by the actual angle measurement of this side angle – whose evidence clearly disturbed him.  Graham also used measurement, earlier, to confirm that his construction of this kite was proper.  Before that, he spontaneously measured the angles of a rhombus in order to develop the previous conjecture about kites in general.  He felt there should be some such relation between the angles of kites.  He relied upon measurement to identify and confirm this relation.


Graham’s focus on the angles of kites began with his search for a relation between the angles of kites.  Before he conjectured that there was some sort of relation (other than the equality of the pair of angles opposite along the line of reflection, which he took for granted), he had drawn a partial analogy to a property that he had studied in class: an exterior angle to a triangle is equal to the sum of the two opposite interior angles.  Though he did not readily reason why this might be so, he was able to recall this relation by visualizing a “bouncing.”  This scheme for remembering the relation may have been triggered by his visualization of the top half of the kite.  In any case, it further demonstrates that visualizations permeate his reasoning.  This experience with Graham also revealed a new kind of reasoning – analogy – that served as pre-conjectural plausible reasoning that a relation existed between the angles.


Graham’s visualization afforded him the ability to “see” constructions before he had actually constructed them in GSP.  In constructing figures, he was able to visualize patterns such as hexagons and kites.  He seemed to recognize lines of symmetry in these figures immediately.  These were instrumental in his constructions of kites, in which he constructed one half by re-producing the already constructed half on the other side.  Recognizing symmetry was also useful in Graham’s post-conjectural plausible reasoning.  He argued equivalence of angle measures in kites by noting the “folding” of the figure along a line of symmetry.  I feel this same operation was useful in finding the midpoint of the side of the hexagon; he may have seen the perpendicular bisector that he constructed as a line of symmetry for the figure.


When Graham’s constructions, observations and conjectures were refuted (usually through measurement or appearance), he often disowned the conjectures.  In the first highlighted conjecture he goes so far as to deny he ever made the conjecture (about the top and bottom angle sums for the diamond).  This abandonment made it difficult for him to modify his conjectures.  In the case just mentioned, he retreats to his previous argument that the relation holds for “equilateral diamonds,” rather than continuing to find a relation that holds for other diamonds.


The first highlighted conjecture also demonstrates Graham’s ability to form abductions.  From the single case in which his relation works, he determines the relation will also work for any diamond (though he denies this later).  He conjectures from this one case, that the key property for the relation is that the kite have the same shape on top and bottom.  Since all rhombuses hold this property, he feels the relation should work for this class of figures.  During the next (and last) teaching experiment, he also relies upon key properties, but this time he uses them in a deductive argument.


In the final teaching experiment Graham was finally able to demonstrate significant deductive reasoning.  This reasoning began with the activity of searching for key properties.  Twice, he stated that the straight angle measure was important.  This may have been plausible to Graham because it related angle measures in the figure.  I hypothesize that it became more plausible when he found that it could be used to relate an exterior angle to an interior one.  His statement that his confusion arose from looking at the wrong line supports this hypothesis.  His visualization of the straight angle was instrumental in removing the interior angle and then relating the remaining exterior angle to the remaining interior angles in the triangle. 

CHAPTER 6: DIANE


On the day that I was approaching students, Mr. Sarfaty recommended that I speak with Diane about participating.  He said that she performed well in his class, and would probably be interested in getting some extra help.  She had missed a lot of class time due to an illness, and Mr. Sarfaty felt that the teaching experiments would be beneficial to her.  So, I approached Diane about participating.  She seemed interested, but admitted one possible conflict.  She said that she was trying out for the softball team and did not know when practices would be held if she made the team.  As it turns out, this was not a problem.


Diane was very open in our communication.  She would tell me about problems that she was having at home and at school.  She felt that Mr. Sarfaty was a very good teacher because he was fair but made them work.  She claimed that mathematics teachers she had in the past let the students do whatever they want, mathematical or otherwise.  She seemed to respect Mr. Sarfaty for challenging his students, but she had not been doing very well in his class due to excessive absences.  By the end of our teaching experiments, she carried an ‘A’ average.  Though I feel that the teaching experiments were helpful, her increased attendance may have been the primary reason for the change.


Throughout our teaching experiments, Diane was concerned about being right.  At two different points in the van Hiele interview she said, “I can never tell if I’m right or wrong.”  Though the interview was not intended to be a test, she seemed to perceive it that way.  In our teaching experiments, she would also interject with statements like, “You get excited about mathematics don’t you.”  I felt that she was unafraid to say anything to me mathematical or otherwise.  Her mathematical statements and questions were forthright and never apologetic or retracted.  In this respect, she differed from both Sarah and Graham.  Though she was concerned about being right, she was not afraid to be wrong.

Van Hiele Interview


I met with Diane in the library on a Wednesday afternoon for the van Hiele interview.  Though Diane had some trouble recalling some geometry vocabulary, such as “trapezoid” and “parallelogram,” she remembered and began using these terms readily when I prompted them.  When presented with a cutout of a trapezoid, she said, “If you said it, I could probably pick it out.”  She also offered that she could find the area of the figure.


In classifying quadrilaterals, Diane initially formed four classes, though I had instructed her to form five classes.  She did not initially distinguish between the general quadrilaterals and trapezoids, and formed one class with both of them.  When I asked her if she could form two classes from the one, she began to remove figures with right angles.  I then told her that, though her classification based on right angles was a fine one, she could also separate the figures based upon parallel sides.  This specific classification (square, rectangles, parallelograms, trapezoids and quadrilaterals) is required to continue the interview and such prompting is advocated by Fuys (1988, p. 21).  After I made the suggestion, she modified her classification to include trapezoids.


In listing properties of the classes, Diane responded much as Sarah had, and much as prescribed by module 1 (p. 22).  She correctly included properties such as parallel lines, right angles, congruent sides and congruent angles.  She also included some non-standard properties, such as the requirement that rectangles have unequal adjacent sides, and that parallelograms have pairs of acute and obtuse angles.  Other properties were standard but unexpected.  For instance, she included the property that parallelograms have 360 degrees and that their opposite angles are congruent.


In the “subclass relations,” “uncovering shapes” and “minimum properties” sections, Diane responded much as expected of a student operating at level two or above.  After modifying her definition of rectangles to exclude the requirement that they must have sides of different lengths, she recognized squares as a special subclass.  Likewise, she noted that rectangles were special parallelograms and that parallelograms were special quadrilaterals.  In “uncovering shapes,” she was able to determine the possible classifications of a shape as it was uncovered one corner at a time.  She could eliminate, for example, squares and rectangles as possibilities after seeing a non-right angle.  In listing minimum properties, she chose just two properties, from a list of eight, that were necessary and sufficient descriptors of a square: all angles are right and all sides are congruent.  When I asked her whether this could describe a pentagon as well, she claimed that a pentagon could not have all right angles.  Also, she claimed that the property of all right angles was sufficient for identifying rectangles.


Diane’s reasoning was most impressive in identifying possible quadrilaterals given verbal clues.  Specifically, we had a couple of interesting discussions concerning figures with four sides whose opposite sides are congruent.  After clarifying that I intended both pairs of opposite sides to be congruent, Diane included squares, parallelograms and rectangles as classes of figures meeting the requirements.  She had some trouble deciding whether trapezoids would work, though.  She formulated a question to resolve this, “Can something be congruent without being parallel?”  Her actions following the question help clarify the meaning behind her question.


Diane drew a pair of congruent parallel line segments, but drew them such that they would not form the opposite sides of a rectangle.  She claimed that if the other pair of opposite sides were not parallel, you would have to extend one of the congruent parallel sides to make an enclosed polygon; thus, the parallel sides would no longer be congruent.  Here, she seemed to refer to a concept that points on non-parallel lines get further apart as you move further from this point of intersection.  Having heard her argument, I felt that she had successfully demonstrated that trapezoids could not satisfy the properties described.  She used similar arguments to show that the described figure would have to be a parallelogram, though she had more trouble explaining her reasoning in a deductive manner.  “I like did it in my head.  I can’t put it [into words].”  However, she was able to deduce that a figure having congruent opposite sides and at least one right angle would have to be some type of rectangle.


Diane seemed to be reasoning much as Sarah had, but her arguments seemed more logical and deductive.  She was able to “order classes of shapes,” “identify minimum sets of properties,” and “give informal deductive arguments” (pp. 64-65).  Though I did not recognize an ability to “separate the Siamese (a statement and its converse) twins,” as Sarah could not, I never encountered such problems in her reasoning either.  The inability to separate a statement from its converse, then, is a negative characteristic of level two reasoning that I cannot account for in my experience with Diane, in the van Hiele interview.  This indicates that the van Hieles best describe Diane’s reasoning as at least level two.  However, I do not feel that Diane’s reasoning was formal enough to characterize level three reasoning.   Particularly, her arguments concerning shapes with opposite sides congruent, while impressive, were informal and relied upon drawings of particular figures rather than axioms and definitions.  Thus, I feel that Diane’s reasoning, concerning the van Hiele descriptors, was best described as level two.

Teaching Experiments


Diane was already familiar with GSP and did not have much trouble working in the teaching experiment environment.  However, from time to time, she preferred to draw figures with pen and paper to illustrate arguments and mark sides and angles, as she had in the van Hiele interview.  She remained very open about her thoughts and was unafraid to ask me questions when she became frustrated or confused.  In fact, she was also unafraid to direct her frustrations at me.  At one such moment, she said to me, “I’ll just tell you flat out: I don’t know.”


She demonstrated an ability to visualize the steps in constructions before she actually constructed them.  For instance, she could visualize the two circles defined by two given points and recognize that one of their points of intersection, along with the given points, formed an equilateral triangle.  She referred to spatial operations, such as folding figures and reflecting them.  Still, some of her arguments were simple observations based on appearance.  Other arguments were deductive.  In fact, she seemed to recognize the need to support her arguments with logically related statements.  However, she sometimes used circular references in her arguments; by this, I mean that she often assumed what she was trying to deduce in an argument.  


Diane used properties learned in class, such as “corresponding parts of congruent triangles are congruent” (CPCTC) and the side-side-side postulate, to support her arguments and form new arguments deductively.  Sometimes she wanted me to identify “givens” for her in order to form deductive arguments.  Much like Sarah, Diane seemed most comfortable working with conditions familiar from class.  After all, Diane was usually successful in class, as demonstrated by her typically good grades.  However, like Graham, Diane was also unafraid to make mistakes and examine ideas.  Thus, our teaching experiments naturally included many observations and conjectures, as well as arguments and tests confirming or refuting them.  The following experiment summaries are intended to display Diane’s geometric abilities, reasoning, tendencies and conjectures to set the background for the three highlighted conjectures.

Experiment One


The first experiment consisted of free play in which I encouraged Diane to demonstrate her usual activities in GSP.  Because of Diane’s willingness to vocalize concerns, our experiments were guided largely by her comments and questions.  One particularly enlightening question arose early in the first experiment, concerning the construction of a regular pentagon.  The question was enlightening because it revealed an aspect of her reasoning that would have gone unnoticed otherwise.  She was trying to create the pentagon by rotating a drawn segment about one of its endpoints, but could not determine the proper angle of rotation.  She asked, “What is an angle between 90 and 180?”  Clearly, she could identify many such numbers, and indeed she did, after a moment.  Still, this statement revealed part of her reasoning concerning the construction.  She had identified some constraints in the measure of the desired rotation, probably based on her concept of right and straight angles.  In fact, she had determined in the van Hiele interview that pentagons could not have all right angles.  Moreover, Diane appeared to be looking for particular and familiar angle measures, as she eventually decided upon 145 degrees.  However, she realized that this would not work after observing that the third segment “did not come back down” after two rotations (the second rotation being performed about the new endopint created as a result of the first rotation) from the first segment which was oriented straight up.  This determination was presumably due to her image of a pentagon having a point at the top, in a house-like formation.


I asked Diane how she knew the angle measures for the equilateral triangle and square, which she had already constructed.  This seemed to remind her of a formula for determining angle measures of regular polygons, which she then used to successfully complete the construction.  Still, I feel that her familiarity with the triangle and square accounted for the immediacy of their construction, and not the formula.


Our interactions eventually led to a discussion of perpendicular bisectors.  Diane had seen that the perpendicular bisector of a side of an equilateral triangle passed through the opposite vertex in the triangle.  She was able to visualize that this would not necessarily be the case in an arbitrary triangle.  This led to an investigation of triangles satisfying the condition described.  She moved the top vertex of the arbitrary triangle until the perpendicular bisector of the opposite side passed through it.  She observed that this happened when the triangle was equilateral.  After measuring, however, she found that the triangle was actually isosceles.  Diane spent a few minutes, with some success, trying to justify her claim, during which time she also claimed that the perpendicular bisector actually bisected the opposite angle.  With some coaching, she supported this claim using SAS and CPCTC.  

Diane was surprised to see that a second perpendicular bisector in her isosceles triangle did not bisect the opposite angle (or even pass through the vertex).  I asked Diane to determine when this would be the case (both perpendicular bisectors would have the desired property).  After about five minutes of adjusting the vertices of the triangle with the perpendicular bisectors constructed, she approximated a case in which the vertices were bisected.  She was able to deduce that this occurred only when the triangle was equilateral: one vertex was bisected when the adjacent sides were congruent; the second vertex was bisected when its adjacent sides were congruent; thus, three sides must be congruent.  Such reasoning appears throughout our teaching experiments and is examined in more detail in the highlighted conjectures.

Experiment Two


In the second interview, as with Sarah and Graham, I introduced Diane to the rules of Euclidean construction.  Once again, this was free play in which I introduced Euclidean construction as a game in which she should try to construct different geometrical figures.  She seemed to understand each of the rules, but interpreted them as a linear set of instructions.  Thus, after constructing a line, two circles and their points of intersection, she halted and said, “There.  I played.”  I didn’t understand the meaning of her comment until, when I encouraged her to try more constructions, she said, “Oh, I see what we’re doing!”


Diane was able to visualize the construction of an equilateral triangle and “diamond” before constructing each of these.  Other constructions, such as that of a trapezoid (isosceles), were recognized fotuitously, after their construction.  Along the way, I asked Diane to justify her claims concerning her constructions.  Most notably, we discussed a construction that she claimed was the perpendicular bisector of an equilateral triangle.


In the previous experiment, we had examined another claim that resembled this one.  Whereas, before, she claimed that the perpendicular bisectors of an equilateral triangle (constructed using the “perpendicular bisector” tool in GSP) bisected the opposite angle, this time she claimed to have constructed this perpendicular bisector using the rules of Euclidean construction.  However, rather than supporting her claim with SAS and CPCTC as before, she relied upon measurement.  Still, I asked her to explain why the line she constructed would have to bisect a side of the triangle.  Since we ran out of time, this discussion was continued in the next experiment.

Experiment Three


At the beginning of the third teaching experiment, I asked Diane if she could recall where we had left off.  She referred to the equilateral triangle and said that she was explaining “why I know that that line bisects it.”  She began to re-construct the situation by constructing an equilateral triangle.  She did this just as before, using the intersection of the two circles defined by two given points.  This construction, as well as her construction of the “perpendicular bisector,” is displayed in figure 11.  When I asked Diane how she knew that her triangle was equilateral, she had some trouble explaining.  She began by describing a few spatial operations.  First, she claimed that AC and BC were congruent because the lines passing through them have “the same tilt.”  By her use of the word “tilt,” I inferred that she was referring to the slopes of the lines, rather than the base angles of the triangle ABC.  She further argued her point by “cutting off” the top of the “triangle” formed by the rays CA and CB.  She claimed that, if you cut it off with a straight line (as with the line through AB), the sides containing vertex C would be congruent.  I, then, rotated the whole figure so that AB was no longer horizontal (as I inferred she meant horizontal by “straight line”), to which she responded, “when it’s (presumably CD) straight up and down, I mean.”

[image: image13..pict]
Figure 11: Perpendicular bisector.


Diane continued to examine the construction.  When I asked her what she was thinking about, she replied, “I’m just trying to get enough crap together to show this is an equilateral triangle.”  Soon after saying this, she added, “I remember how to do this from the other day.”  In fact, in the last experiment she had argued (with some prompting) that the triangle was equilateral because the segments forming it are all radii for one of two congruent triangles.  Once she re-formulated the argument on her own, she expressed her excitement: “Heck yeah!”  Since she was able to re-produce the argument independently to achieve her goal, I feel she had developed a scheme from the past experience.  I cannot be sure what triggered the scheme in this case though.  Perhaps she finally took notice of the circles, which were instrumental in the proof.


Diane returned to reasoning why the dashed line (in figure 11) was the perpendicular bisector of AB.  She observed that E was halfway between C and D, but could not justify this: “You wouldn’t know that either cause you haven’t measured it.”  Though she reasoned many ideas deductively, Diane continued to place a greater credibility in measurement.  This is demonstrated again in the third highlighted conjecture (below).  In the present case, Diane also referred to symmetry.  She seemed to see that C could be reflected through E onto D because “everything is centered.”  In fact, she formed a circle with her hands as she said this.  I feel that she recognized the symmetry of the construction about AB, which would support her claim informally.  Later, however, she begins to examine the construction itself but becomes confused asking, “How did I get that point (E)?


Diane makes yet another claim in trying to prove that the dashed line is the perpendicular bisector.  I believe that she was still trying to use the argument that the segments CE and DE were congruent when she constructed the bold lines in figure 12 and observed that they were parallel.  She supports this observation by citing that the circles are equal.  When I asked her to explain the connection she referred to the distances between F and I and between G and H, and claimed that the two distances were the same.  When I asked her how she knew this, she became frustrated and said, “There’s no way to prove anything.”


Figure 12: Parallel lines.


At this point, I decided that we should take a step back to re-examine the construction of the “perpendicular bisector.”  These experiences are related in the first highlighted conjecture.  In the second highlighted conjecture, Diane constructs a proof of why the two lines mentioned above are, indeed, parallel.  Once again, her reasoning was quite deductive.  

Highlighted Conjectures

Though she referred to concepts from class (as Sarah had) and spatial operations (as Graham had), Diane had a tendency to support her claims in a formal manner.  I cannot identify any particular differences in my instructions to her and do not know whether she adopted this formal view for arguing from past experience.  For now, I can only note that attempts to argue deductively were a common occurance in her highlighted conjectures.

The following conjectures involve mostly post-conjectural plausible reasoning.  This is where Diane’s deductive reasoning proved valuable.  There is also evidence of her analogies, informal arguments and visualizations that lead to conjecture.  Still, most of our experiences in the teaching experiments were centered on post-conjectural plausible reasoning to support observation.  In the first highlighted conjecture, she observed that two particular angles and two particular sides needed in a SAS argument are congruent.  In the second conjecture she supports, through analogy, her observation that two lines are parallel.  Finally, in the third conjecture, Diane constructs perpendicular bisectors for an arbitrary triangle and confirms this construction through several methods.

Conjecture One

Diane had constructed a shape similar to that in figure 13, and had been trying to show that CD was the perpendicular bisector of AB.  She knew that, if she showed that triangle ACE was congruent to triangle BCE, she could finish the proof by CPCTC, as she had used this argument previously for a comparable claim.  She also knew that angles CAE and DAE measured sixty degrees and that segments CA and CB were congruent.  Thus, if she could show that triangle ACE were a 30-60-90 triangle, she would be done.  I recognized that this was her goal only in hindsight, but believe that, for her, it was equivalent to showing that CD was the perpendicular bisector of AB.  The following transcript begins with this goal and uses figure 13 as a reference.  She had already identified segments AC and AD as congruent and angle DAE as a sixty-degree angle.

Figure 13: 30-60-90 Triangles.

D:
[Tilts head.] Oh.  Well 60 and 60 [referring to angles CAE and DAE] makes 120.  So it means these have to be 30 [referring to angles ACE and ADE].

T-R:
Why would they have to be the same?

[For a few minutes Diane and I discuss what she has shown so far, before she makes the next observation]

D:
[Flipping her hand to face up then down again, repeatedly]  And it’s the same exact triangle [referring to the one above and the one below AB].

T-R:
What are you doing with your hand?

D:
It’s like a reflection [laughs].

T-R:
Ok.  Maybe we could go that route then.

D:
Everything is reflected in this picture.

T-R:
Ok.  I like that.

D:
So then if…  Can I use that?  I argued it.

T-R:
We’ll use it for now.

D:
So these two angles have to be equal [angles ACE and ADE].  So that makes them 30 because that’s all you have left.

T-R:
All you have left from what?

D:
[Indicates triangle ACD] 120 in the big one.  Then they have to be each 30.  We proved that [angle CAE] has 60 and if that’s [angle ACE] 30, then that [angle AEC] has to be 90.  Which proves that those [angle AEC and BEC] are equal.

T-R:
Ok.  I’ll buy that.

D:
Awesome!

It seems that Diane was focussing upon the triangle ACD from the start, though I did not realize this until the end.  In hindsight, she could have justified the equality of angles ACE and ADE by referring to them as the base angles of triangle ACD.  Later, she admitted that she was not aware of the equality of base angles in an isosceles triangle.  In any case, visualizing the triangle and focussing upon its angles was a crucial first step to her argument.  She recognized that the larger angle measured 120 degrees, and, if she could prove that the other two angles were congruent, she could determine that ACE is 30 degrees, as desired.  


It is difficult to determine whether she foresaw this line of reasoning or some part of it.  At least she was able to relate arguments in a logical manner and in a way that brought her closer to her goal.  Perhaps she was following her previous strategy of “getting enough crap together.”  Anyway, she was able to demonstrate the equality of the two base angles and immediately determined that they must be 30 degrees each.  If I had not interrupted her, she may have completed the last couple of steps in short order, as well.


The other key to her reasoning was the spatial operation of reflecting about a line.  It interested me that she unconsciously flipped her hand, presumably, simultaneous to the spatial operation.  This may support Piaget’s assertion that spatial operations resemble physical manipulations.  The notion that her physical action was unconscious is supported by her laughter upon my mention of it.  In any case, the reflection revealed the equality of the base angles.  This step toward her goal was immediately followed by the final one of showing that angle ACE measured thirty degrees.  This, her visualization of equality through reflection was important and goal-directed reasoning.

Conjecture Two


Diane’s second conjecture followed from the first.  She had just finished proving that she had found the perpendicular bisector of an equilateral triangle when I asked her to justify another claim.  She had previously observed that the three horizontal lines shown in figure 12 were parallel.  The following dialogue begins with Diane’s reasoning for the argument in reference to figure 12.

D:
Cause they make a 90-degree angle.

T-R:
Ok.  I agree this one’s a 90-degree angle [angle AEC] because you showed me that one [in the proof of the first highlighted conjecture].  Why would that one [angle ECF] have to be 90 degrees?

D:
Um, cause this is also an equilateral triangle [triangle ACF]. [Pause]


I like get an idea and then I forget what I’m trying to do.

T-R:
See if you can get it again.

D:
Oh.  I know how to do that.  If this angle [points to angle AEC] is 90, then that angle [AED] is 90, then that angle [EDH] is 90.

T-R:
How do you know?

D:
Cause that’s what we learned [laughs].  Oh, they’re not parallel.

T-R:
You are trying to show they’re parallel.

[Diane indicates that she was trying to use an alternate-interior angles argument.]

D:
Oh yeah!  It’s the reflection thing again.  They’re the same distance apart [pointing at the top and bottom horizontal lines].  Oh, they don’t form a 90-degree angle.

T-R:
I believe the bottom forms 90 degrees.  Why does the top form 90 degrees?

D:
[Sits her head on her palm.] Oh look!  It’s another big triangle [tracing triangle DFG with her finger].  So we could just prove the same exact thing again [presumably referring to the perpendicular bisector proof shown in the first highlighted conjecture].

Diane went on to successfully complete the analogy and, hence, prove that the middle and top horizontal lines were parallel.  Though she only observed this at first, her attempts to reason why they were parallel serve as conjectures themselves.  The assumption that the situation was problematic is demonstrated by her repeated attempts to explain the situation.  Though such attempts may be directed to satisfy the teacher-researcher, in this case I feel the problem was her own.  This is demonstrated by her own monitoring.  Rather than awaiting my confirmations or refutations, on at least a couple occasions she refutes her own ideas: “Oh, they’re not parallel” and “Oh, they don’t form a 90-degree angle.”

From the start, Diane appears to be using a particular scheme in her arguments.  It seems that the task of proving parallel lines immediately turned her attention to finding right angles.  This may have resulted from classroom experience.  She refers to ninety-degree angles in her first statement and every argument thereafter.  Thus, this scheme modified the problem for Diane, so that her goal changed to one of finding two right angles.  She quickly identified the first one, since she had just proved that it measured ninety degrees.  Next, she searches for a second one.

Early on, Diane found a second equilateral triangle.  Since an equilateral triangle had been used to find her first right angle, she may have considered this second one important.  However, she lost her line of reasoning: “I like get an idea and then I forget what I’m trying to do.”  When she re-considered the situation, she focussed on the bottom two parallel lines, trying to use an alternate-interior angles argument.  This became evident when she said, “that’s what we learned.”  Upon saying this, it also became evident to her that what she had learned concerning alternate-interior angles only applied if there were parallel lines.  Thus, she realized that her reasoning was flawed (specifically, it was circularly referenced).

In the third attempt, Diane also used a circular reference, but this time it is based on a spatial operation.  She argued that the top and bottom line were parallel because they are “the same distance apart.”  In indicating the reflection, she took for granted that the top and bottom lines are the same distance from the middle line.  However, she corrects herself once more after realizing that the lines don’t form a ninety-degree angle.  Somehow, then, she had equated equidistant with forming right angles.  I believe these are key properties in her image of parallel lines: she seems to imagine perpendicular lines to the pair of parallel lines, which form ninety-degree angles with each of them and form segments of equal lengths.

Diane’s last argument was prompted by my question about why the top angle forms ninety-degrees.  Though I did not indicate a specific angle, Diane seemed to focus on the angle [ECF] directly above the one that she had already proven to be ninety degrees [angle ACE].  This probably made the analogy easier for her.  After a few seconds, Diane noticed the big triangle [DFG] and its importance.  In this case, the analogy might also be interpreted as an assimilation of the situation into an existing scheme.

Upon noticing the triangle and with the goal of finding a ninety-degree angle, Diane may have assimilated the situation into the scheme of constructing perpendicular bisectors in equilateral triangles.  She had recently constructed the perpendicular bisector of the smaller triangle [ABC].  Thus, she would have had to ignore differences between that experience and the new one, such as size and orientation.  Then, she could apply her previous scheme for the construction, which would equivalently construct a right angle as desired.

Conjecture Three

This last highlighted conjecture demonstrates levels of credibility in Diane’s post-conjectural plausible reasoning.  She was attempting to construct the midpoints of an arbitrary triangle.  She had done this before for equilateral triangles, but became frustrated when the same circle scheme did not work for the general case.  She realized that the circles needed for the construction would have to have the same radius, but found that it was “impossible” to find such circles in an arbitrary triangle.  When I suggested that she construct the circles displayed in figure 14, she was surprised to find the segment joining their intersections bisected side AB.  The following dialogue begins with Diane’s observation of this, and continues with her various examinations to confirm it.

D:
Oh my gosh!  It makes the midpoint.

T-R:
How do you know that?

D:
[Connecting D and E on GSP]  Cause… [Pause] I don’t.

T-R:
Why did you say it did?

D:
Cause it looks like it did?  Can I measure it and see.

[I instruct Diane, first, to move point A around by clicking and dragging.]

T-R:
On a scale of 1 to 100 how sure of that [that segment DE bisects segment AB] are you?

D:
Right now, I’d have to say 100, considering I’m moving it everywhere.

T-R:
Oh.  So you don’t need to measure, cause you’re 100 percent sure.

D:
Well, I’d like to measure just to verify my 100 percent.

T-R:
You can’t verify 100 percent.

D:
99 percent.  So, can I verify my 1 percent?

T-R:
Yeah, [but] measuring doesn’t really verify.  You’ve seen that before.

D:
Well, we have it [the measuring precision] on thousandths.  It might not be the exact…

T-R:
Now, how can you find the midpoints for the other sides?

D:
Do the same thing.  [Constructs a second midpoint.]


Ooh.  That doesn’t look like the midpoint.

T-R:
Do you think it’s the midpoint?

D:
Yeah.

T-R:
Why do you say it’s the midpoint… or not?

D:
[Laughs]  I’m using my 100 percent rule, cause there’s no difference.


Diane was very candid with her thoughts in this dialogue.  When I asked her about her midpoint claim, she admitted that her reasoning was based upon “looks.”  Still, she was uncertain about the claim, and decided that measuring the segments would “verify” it.  This implies that measurement was a more credible reference than appearance.  In fact, measurement also seemed to supercede inspection over various cases; even after she observed the construction as she moved one vertex, she still felt the need to measure.  While “moving [the vertex] everywhere” made her “99 percent” certain that she had found the midpoint, measurement was the only pure verification for her.


Figure 14: Midpoint of a side of an arbitrary triangle.


Diane immediately recognized that the circle strategy could be used to find the other two midpoints.  Once again, this was an analogy that resembled an assimilation into a recently acquired scheme.  She believed that “there’s no difference” in the new case.  Whereas in assimilation Diane would ignore differences, in analogy she would modify the strategy for differences.  Her claim that there is “no difference” implies the former, but the fact that she did make adjustments in the actual construction of the other midpoints suggests the latter.  In any case, the differences between the cases were minimal and the two interpretations are comparable.


Whether we interpret Diane’s action as analogy or assimilation, she demonstrated a great deal of faith in the reasoning.  Even though the second construction did not appear to pass through the midpoint, she still maintained that it must.  Also, though she appeared a little uncomfortable with this apparent contradiction, she did not suggest a need to measure.  Thus, I feel that Diane placed equal credibility upon this analogy as she did upon measurement.

Summary


Most of Diane’s conjectures in our teaching experiments came in the form of explanations for her observations.  In fact, the initial claims that she supported through conjecture were mostly based upon appearance and operations in her visualization of them.  Being non-problematic for her, I refer to these claims as observations.  They included the observation that a particular perpendicular bisector in an equilateral triangle bisected the opposite angle.  Her third conjecture was based upon the observation that three particular lines were parallel.  In making these claims, sometimes she would admit that her initial reasoning was simply that “it looks like it.”


In addition to simple appearance, Diane’s observations were often the result of spatial operations.  She was able to visualize, for example, that the perpendicular bisector she observed in the equilateral triangle would not necessarily bisect the top vertex if she were to move the vertex.  She could also visualize constructions before actually constructing them in GSP.  This allowed her actions in construction to be more goal-directed and efficient.  To illustrate, Diane was able to determine that the 145-degree rotation was inappropriate in constructing a regular hexagon, after constructing only three sides in using this rotation.  She seemed to visualize the pentagon and when it became clear the construction would not fit that image (when “it did not come back down”), she abandoned the attempt in favor of a new approach.


Diane’s spatial operations sometimes served as post-conjectural plausible reasoning.  She used arguments that referred to tilting, reflecting, centering and symmetry to justify her claims.  In the first conjecture, she supported her assertion that triangle ACD was isosceles by visualizing that “everything is reflected in the picture.”  However, Diane’s spatial operations were most useful in developing conjectures, because, as stated previously, these visualizations often served as conjectures.  For example, in visualizing triangle ACD in the first highlighted conjecture, Diane seemed to conjecture (consciously or otherwise) that this triangle was a 30-120-30-degree triangle, or at least isosceles.  Otherwise, focussing on it would not help her in her goal of showing that angle ACD measured thirty degrees.  In the second highlighted conjecture, Diane attempted to prove that two lines were parallel by visualizing the alternate-interior angles.  Though this argument was circularly referenced, she used visualization to conjecture the reason that the lines were parallel.  Finally (also in the second conjecture), Diane visualized the “big triangle.”  This visualization itself seemed to conjecture the triangle’s importance in finding a right angle.  This act of visualization was not a mere observation, but an intentional focus upon a figure that could (and, indeed, did) help her reach her goal.  The analogy completing her goal could only follow after this focussed visualization.


Like Sarah, Diane used many concepts and relations learned in her classroom experiences.  In trying to find the correct angle of rotation for the regular pentagon, she recalled a formula from class.  She sometimes justified claims with statements like, “That’s what we learned [in class].”  Other ideas from class seemed to have been developed into schemes for Diane.  She tried to use a scheme for alternate-interior angles to prove that a particular angle was a right angle, in the second highlighted conjecture.  This scheme seemed to involve the visualization of a pair of parallel lines and a transversal, which triggered recognition of equality amongst the angles.  However, in this case she realized that she could not assume the pair of lines were parallel.  As a previous argument of the same conjecture, Diane seemed to translate the problem of proving two lines parallel to a problem of finding a transversal forming right angles with each of the lines.  I believe this served as a scheme as well: She recognized the situation and acted by re-defining it as she probably had in proofs done in class.  Other schemes from class experience seemed to include the use of SAS and CPCTC arguments to prove congruence, and rotating segments through a particular angle in order to construct regular figures.  In a couple of instances of using such schemes Diane even remarked, “I know how to do that” and “I remember how to do this.”


Because no two situations are the same, Diane’s use of schemes required an assimilation.  At least when she was aware of the assimilation, I refer to these uses of schemes as analogies.  However, I might also include instances where the differences between the triggering situations or resulting actions of the scheme were significant, though this was often difficult to determine.  To illustrate a couple of such cases, Diane was surprised to find that a second perpendicular bisector did not pass through the opposite vertex as the first had, and later claimed that she could construct the midpoint of a second side of a triangle in the same manner as she had another because there was “no difference.”  Whether these examples are better described as assimilations or analogies is unclear.  In both examples, Diane seemed to ignore differences between the new situations and the old; in fact, she claimed there were not any differences in the latter example.  However, I do not feel that she had well-developed schemes for either construction, since she had only recently developed them.  In performing the subsequent constructions for each case, she had to mimic the procedure of the first construction, thus relying upon the similarity of key aspects between the new and old situations.


Whether using visualizations, schemes, analogies or otherwise, Diane seemed to recognize the need to justify her claims.  Often, this seemed to involve gathering information about the situation and attempting to sort it out in a manner that would bring her closer to her goal (or as she puts it, “getting enough crap together”).  However, sometimes this task got too confusing for her; she would become frustrated and claim that “there’s no way” or that she “gets an idea and then forgets.”  Other times her arguments involved circular references, assuming what she was trying to prove.  Still, she was often able to monitor her reasoning well enough to recognize these flaws: “Oh, they’re not parallel” or “Oh, they don’t form ninety degrees.”  Her ability to reflect often enabled her to relate arguments which got her closer to her goal, and she seemed to recognize this progress and build from it.


Often, Diane relied upon measurements to justify her claims as well.  Our conversation in the last highlighted conjecture seems to suggest that measurement was even more credible than appearance.  In testimony of this, Diane made statements throughout our teaching experiments such as, “You wouldn’t know because you haven’t measured it” and “I’d like to measure just to verify my 100 percent.”  However, at the end of our last dialogue, Diane also demonstrates her faith in her own reasoning; despite its contradictory appearance, Diane proclaims her confidence in the midpoint analogy by saying, “I’m using my 100 percent rule, cause there’s no difference.”

CHAPTER 7: SYNTHESIS AND DISCUSSION

Beauty is truth, truth beauty

that is all yea know on earth,

and all yea need to know.

Keats, 1820


The pre-supposed notion of this study that students learn through the forming, testing and reasoning of their own conjectures is supported by constructivist epistemologists, various mathematics educators and mathematicians alike (Polya, 1954; von Glasersfeld, 1987; Lakatos, 1976; Chazan & Houde, 1989; Healy, 1993).  The teaching experiments conducted in this study not only afforded students the opportunity to learn through their own conjectures and reasoning, but have also allowed me to form and modify my own hypotheses concerning the nature of these activities.  From my experiences with each student, several themes have emerged concerning the nature of conjecture and plausible reasoning.  In this chapter, I describe these themes, their influence upon my understanding of conjecture, and possible implications of this study.


The experiences of concern in this study are those that begin with a perturbation, since conjectures are assumed to arise in response to perturbations in an attempt to re-establish equilibrium (von Glasersfeld, 1987).  If there were no perturbation in the experience, there would be no motivation to conjecture new ideas about it.  Though it is not the purpose of this study to confirm this assertion, my observations agree with it completely.

In my experiences with the three students, perturbations were evidenced by surprise, frustration and expressions of disturbance.  Sometimes, these were expressed verbally: “Oh, my gosh!”, “Whoa!”  Sometimes, students’ efforts to eliminate the perturbation led to continued frustration and inactivity: “I don’t know what else to do.”  Other times, their ensuing activities led to assimilations and accommodations that eliminated the perturbation and re-established equilibrium or established a new equilibrium: “Awesome!”, “right”, “I guess that’s about it.”  Whether they are verbalized or not and whether students were able to eliminate the perturbation or not, I am interested in students’ activities from perturbation to equilibrium or inactivity.  This is the realm of conjecture and plausible reasoning.  Dialogue with the students about their conjectures, following equilibrium, may be helpful in understanding post-conjectural plausible reasoning.  The following paragraphs summarize elements of conjecture from my experiences with each of the three students in the realm of conjecture and plausible reasoning.

Synthesis of cases

When faced with a problematic situation, Sarah tended to assimilate her experience of it using existing schemes developed through classroom experience.  When this was not successful, she would find aspects of the situation that fit the schemes developed from past experience.  Though this was not always successful either, it would often allow her to alter the problem.  I refer to such attempts as partial analogies.  Since they changed the nature of the perturbation, I refer to them as conjectures as well; she seemed to conjecture a relationship between the new experience and an existing scheme and, thus, redefine the problem.  Sarah appeared persistent in these attempts, and they were often instrumental in eliminating perturbations.

Throughout the experiments, Sarah used strategies in visualization as well, in order to develop plausible conjectures.  Scanning for recognizable shapes seemed to be a conscious activity for Sarah: “I basically just looked for the shapes.  Lines that connect that kind of look like it.”  This scanning served as pre-conjectural plausible reasoning that would allow her to visualize the desired construction, in order to develop a plan for its construction.  Visualization was also helpful in finding distinguishing features in a construction.  This was most prevalent in explaining why a particular construction works; she would examine the construction for peculiarities that she could conjecture as key elements.  Such peculiarities were also prevalent in her post-conjectural plausible reasoning.  

Sarah would justify conjectured relations by further conjecturing the relevance of particular observed features in the construction.  Other elements of her post-conjectural plausible reasoning included spatial operations such as reflections, which she used to justify conjectured equalities (sides and angles).  Still, she attributed credibility for her conjectures based, primarily, on measurement and appearance.  She would justify claims by stating that the related figure “looks like it,” and was often inclined to check equality of angles and sides by measuring.

Graham relied heavily upon visualization and spatial operations.  He tended to visualize figures as wholes and operated on them with reflections and rotations.  He used these spatial operations to construct new figures, as well as to justify relations between sides and angles in the figures.  Though he often observed the conjectured relations based on appearance, sometimes his spatial operations were instrumental in conjecturing the relations.  Particularly, recognizing lines of symmetry in constructions often led to conjectured relations.


Like Sarah, Graham tended to search for key properties that would support his conjectures or explain a particular construction.  The properties that he felt were important nearly always involved spatial operations.  Once he had identified these properties, he would often generalize to other cases.  Sometimes these were generalizations from a single case.  In forming such abductions he would readily generalize to whole classes of figures sharing the conjectured key property.


Graham attributed much credibility to his abductions, often ignoring obvious contradictions to them in a particular construction.  He placed even more credibility upon measurement.  When measurement or some other test refuted his conjectures, he often abandoned the conjectures rather than modifying them.  Though he did not readily support his arguments in a formal manner, he demonstrated his ability to develop a line of deductive reasoning.  His visualizations played a key role here as well.


Diane made many of her claims based upon appearance.  She would support these observations with statements such as, “it looks like it.”  Beyond appearance, she was able to visualize the products of constructions, as well as some of the steps involved in constructing them.  This offered her the foresight to devise strategies to complete constructions.  However, most of Diane’s conjectures arose in explanation of her observations and visualizations.


Like Sarah, Diane assimilated many new situations into schemes developed through her classroom experiences: “That’s what we learned.”  Diane also used schemes to alter problems in a goal-directed manner.  The use of such schemes, then, served as conjectures intended to bring her closer to her goal.  She was often successful in these goal-directed actions, largely because she was willing to apply various schemes not knowing whether they would reveal any productive line of reasoning.


Like Graham, Diane’s reasoning depended greatly upon visualization.  For her, visualization included an intentional focus on aspects of the situation that she deemed relevant.  Many of her successful deductive arguments began with a particular focus on a recognizable configuration, to which she could apply schemes.  She also used spatial operations, such as tilting, reflecting and centering, on her particular configurations to make informal arguments about equality of sides and angles.


Diane’s visualizations often allowed her to find aspects of a new situation that fit key aspects of a situation from previous experience.  In these cases, she was able to mimic the procedure used in the first situation.  Sometimes these analogies resembled an assimilation of the situation into an existing scheme, in which differences are ignored.  Diane even claimed, comparing a situation to a previous one, that there was “no difference.”  I feel both of these methods served as conjectures for Diane in our teaching experiments; schemes were made evident by the use of well-formed procedures, whereas analogies usually required a step-by-step comparison of the situations (mimicking).

Diane recognized the need to justify claims.  She seemed to view this as a process of gathering relevant pieces of information and combining them in meaningful ways.  In combining these ideas, she was willing to make mistakes and try again.  She also monitored her arguments insuring they applied to the “givens” in the situation.  Still, she would sometimes run out of ideas and become frustrated: “There’s no way,” and “I get an idea and forget.”  Other times, she would make circular references, assuming something that she was trying to prove.  As with the other students, Diane placed a high degree of credibility upon appearance and measurement (seemingly, more upon measurement), but also had a lot of faith in her arguments: “I’m using my 100 percent rule, ’cause there’s no difference.”

In the teaching experiments with each of the students, I have observed several situations in which students appeared to experience perturbations.  Observing their attempts to eliminate the perturbations has revealed the importance of several activities: schemes, analogies, abductions, visualization and spatial operations.  I suspected that these activities would play a role in conjecture and plausible reasoning.  Still, up to this point in my study, I have attempted to put aside my own prejudgments about conjecture in order to interpret students’ actions in an unassuming way.  I now resume my conceptions of conjecture in general, which have inevitably changed as a result of those experiences reported in this study (and those that I will never successfully illustrate).

A new perspective

In the literature review, I cited von Glasersfeld’s model for a “pattern of action.”  In this model, he maintains that perturbations arise when we perceive unexpected results in the assimilation of a situation into an existing scheme.  Thus, the perturbations that motivate conjecture and initiate plausible reasoning necessarily result from assimilation.  However, I have observed that subsequent attempts at assimilation of the situation into other schemes often follow the perturbation.  Sometimes these attempts lead the student back to a perturbation similar to the first, but other times they allow the student to alter the problem.  In this way, assimilations of situations into schemes may serve as conjectures.  The question that remains concerning such conjectures is how the situation could trigger more than one scheme.  Von Glasersfeld’s description of the “pattern of action” may be helpful in answering this as well.

Von Glasersfeld asserts that one likely reaction to the initial perturbation, caused by a pattern of action, is for the student to re-examine the situation, including previously disregarded aspects of the situation.  In their re-examination, students may notice aspects of the situation which trigger new schemes.  Without this re-examination, it may still be possible that a particular situation could trigger more than one scheme.  The initial perturbation may arise by the use of the scheme deemed most appropriate by the student, and a second scheme may serve as an attempt to eliminate the perturbation (a conjecture).  I did not observe the latter situation (students appeared to be constantly re-examining the situations), but do not feel justified in dismissing it as possible either.

In my study, Sarah and Diane seemed more inclined to assimilate new situations into existing schemes.  I feel this follows from their success in the classroom; they used schemes in geometry that they had developed in class and whose implementations had made their classroom experience more successful.  Graham, on the other hand, had more experience in animation and computer graphics.  He tended to approach problematic situations through the use of spatial operations.  I am hesitant to include the spatial operations developed in his experience as schemes; while he was able and predisposed to perform these operations, I do not feel that any particular operation (action) was triggered by any given situation (as an action would be triggered in a scheme).  In any case, Graham was not as successful in class as the other two students and rarely used schemes that could be directly attributed to classroom experience.  Therefore, the frequency in use of assimilation and schemes in conjecture seems dependent on the success of such schemes in past experience.

I also cited von Glasersfeld’s work concerning reflection, specifically reflected abstraction.  Based on his work, I posed a model of a series of accommodations that, through reflection, reveal further perturbations (in the form of inconsistencies).  Re-establishment of equilibrium would only occur when reflected abstraction reveals no further inconsistencies.  For the most part, the students in this study were not pre-disposed to this sort of reflection in their mathematics.  Rather, the students were more involved in action.  Graham demonstrated this as he ignored contradictions to his side angle argument in rhombuses.  He claimed that a particular angle must be 43.6 degrees despite the fact that the angle was clearly obtuse, among other contradictions.  In nearly all cases, students seemed to recognize inconsistencies only after reflection was prompted by my questions to them.  Diane offered the only exceptions to the generalization.

Diane was certainly the most assertive student of the three.  I have said, also, that she appeared unafraid to make mistakes.  Thus, I hypothesize that these two distinguishing characteristics played a role in her ability to monitor her own arguments.  Her reflections may have resulted from her activity of listening to herself; she would “throw out” ideas verbally and listen to them as if they were said by another.  I believe her action provides a good metaphor for reflected abstraction, because, as von Glasersfeld describes it, reflected abstraction is “reflecting on reflection” (1991, p. 59).  Her verbalizations about a situation are expressions of reflection upon the situation, and, in listening to her verbalizations, she is reflecting upon reflection.  This may account for her uncommon (at least amongst tenth-grade geometry students) disposition.  The disposition of monitoring her verbal arguments may explain the deductive nature of her arguments.  By this, I mean that monitoring her own arguments provides her with a means of examining their logical sequence and reforming them more logically.  Thus, monitoring may serve as a method of reflected abstraction, which could play an important role in deductive reasoning.


Based on Peirce’s theories, Fann described abduction as inferring the cause of a situation from its effect (1970, p. 15).  He elaborates by offering a model for hypothesis, which for Peirce is synonymous with abduction: “Hypothesis is where we find some surprising fact which would be explained by supposing that it was a case of a certain rule, and thereupon adopt that supposition.” (p. 21).  At least with Graham, I observed instances that would fit such a model.  For one instance, Graham was surprised that the top and bottom angle measures in a particular rhombus added to the measure of a side angle.  He determined a rule, which stated that any kite with two lines of reflection would satisfy the condition.  In fact, he adopted the rule readily and with such determination that he was more surprised (even bewildered) when he experienced a refutation of it.  Thus, I feel that abduction is a very powerful concept and one that I underestimated before analyzing the teaching experiments with Graham and the others.


There is at least one further aspect of abduction that the above experience fits.  Graham appeared to have adopted a rule that could be easily refuted.  In fact (despite his apparent confidence in it), he immediately tested the rule and found it to be false.  Peirce believed that “the best hypothesis is one which can be most readily refuted if it is false” (p. 30).  Though I do not feel my experiences can confirm such a claim or that they could be used to explain how one selects this “best hypothesis,” my experience with Graham at least provides an example.


I have said that many of Sarah’s conjectures were formulated as explanations of a phenomenon.  She would examine the situation for peculiarities whose presence might explain the particular phenomenon.  This also resembled the model for abduction – finding a rule that would serve as the cause of the perceived effect.  Sarah seemed to focus on aspects of the situation which were least common in her experience (peculiarities).  She did not seem to consider a method for testing the rules at that time; rather, she appeared to be describing the unusual aspects of the situation.  It is possible, though, that rules which rely upon more peculiar features may be most readily refuted in testing.  In any case, the search for “key properties” was evident in each of the three students’ pre-conjectural plausible reasoning, and may be thought of as compatible with Peirce’s theory of abduction.


Peirce’s statements are ambiguous in reference to induction, sometimes referring to it as a means of forming conjectures (pre-conjectural plausible reasoning) and other times referring to it as a method of testing conjectures (post-conjectural plausible reasoning) (Fann, 1970).  The former is implied by the work of Chazan and Houde (1989), whereas the latter is implied by the work of Polya (1954, vol.’s I & II).  In the teaching experiments of this study, I have only experienced induction as the latter (post-conjectural plausible reasoning).  Though I can understand the importance of induction in forming conjectures in the sciences, the tenth-grade geometry students in my study seem to rely upon a less structured approach.  Induction is structured in the sense that it results in a statement about a whole class of objects.  This distinction may be clarified by a quick analysis of conjecture, as defined by Chazan and Houde.


“Conjectures are statements about sets of objects that explicitly mention the intended set of objects” (Chazan & Houde, 1989, p. 3).  The constraint that conjectures pertain to whole sets implies a process of conjecturing in which “we generalize from a number of cases of which something is true and infer the same thing is probably true of a whole class” (Fann, 1970, p. 10); this is Peirce’s definition of induction.  Thus, Chazan and Houde seem to believe that conjectures are made only by induction.  I feel that this is too strict of a conception of conjecture to include the conjectures formed by tenth-grade geometry students.  In fact, I cannot cite a single instance of such reasoning amongst the three students in my study.


I do not mean to imply that these students do not use induction.  On the contrary, I believe that induction is important in defining concepts such as that of kites.  If, for instance, the only cases of kites that a student has experienced are rhombuses, then the student might induce from these cases that all kites have two lines of reflection.  Graham seemed to define kites this way at one point.  However, in order for the induction to serve as pre-conjectural plausible reasoning, it must address a perturbation.  If indeed Graham experienced a perturbation concerning the defining characteristics of kites, I do not feel that he would naturally address it through induction.  Rather, from my experiences with him, I believe that he would examine one of the kites for key properties.  At this point, he might assert that those key properties were shared by all kites, which would explain their presence in the one case.  This is a conjecture by abduction.  Only after this abduction would he examine the other cases to see if they shared the same property, thus adding plausibility to his conjecture post-conjecturally.  I feel that this is what Pat Thompson meant when he told me that every induction requires an abduction.


I did actually observe students using induction to test their conjectures.  For example, once she had observed all of the cases generated by moving around a vertex of a triangle, Diane claimed that she was ninety-nine percent sure that her midpoint construction would work for the class of triangles.  Though her conjecture of why the construction worked was based upon a single case, the observation of other cases added credibility to the argument.  This is in agreement with Polya’s idea that “[a conjecture] becomes more credible if it is verified in a new particular case” (Polya, 1954, vol. I, p. 7).  Admittedly, Polya also cites cases in which he states, “we found this conjecture by induction,” but these are the structured approaches of an experienced mathematician and not the natural reasoning of beginning geometers.


Chazan and Houde might limit pre-conjectural plausible reasoning to an induction.  Fann cites that they would not be alone in this assumption: “[Many philosophers] insist that the logic of discovery is nothing more than a logic of inductive inference.” (Fann, 1970, p. 2).  Fann himself, following Peirce’s theory, seems to limit the forming of a conjecture to an abduction.  However, I have illustrated examples in which the students in this study have formed conjectures through assimilations into schemes and through analogy.  In fact, I have previously argued that the two are sometimes difficult to distinguish.  Thus, in forming conjectures, there must be room for analogy and assimilation of an experience into a scheme.  Moreover, there should be enough room to resolve the ambiguity between the two.  Those methods of pre-conjectural plausible reasoning cited by Fann include only two forms of what he calls ampliative (because its result amplifies the statement) inference: induction and abduction (p. 7).


Polya refers to analogy as “a sort of similarity… on a more conceptual level” (1954, vol. I, p. 13).  He further states that the existence of analogy depends on whether the thinker intends to reduce shared aspects of two cases to definite concepts.  He goes on to cite the defining concepts which make the paw of a cat and the hand of a man analogous.  Throughout the teaching experiments, I have cited student analogies which relied upon the similarities of key concepts between two situations.  The recognition of these common concepts was usually made evident when a student mimics in one situation the actions that were successful in another.  When this mimicking was limited to only some of the initial actions, I referred to the reasoning as a partial analogy.  I feel that these interpretations are compatible with Polya’s definition in which analogies relate “defining concepts” between two situations.


At least with Sarah and Diane, I observed analogies and partial analogies.  In that they altered or eliminated perturbations and that their success in doing so was only hypothesized, these analogies served as conjectures.  I claim that the pre-conjectural plausible reasoning involved in these conjectures was neither induction nor abduction.  Since analogies involve actions from one case being applied to another, they certainly should not depend upon a “generalization from a number of cases,” as attributed to induction (Fann, 1970, p. 10).  The question remains whether analogies must follow from an abduction, and whether they did in the cases cited from the teaching experiments.


The advent of analogy begins as abduction does, with “the observation of certain facts.”  The distinction between the two, then, must reside in whether there exists a “supposition of a general principal to account for the facts.”  If a student were to suppose a general principal explaining the two similar cases, then an analogy could result from an abduction.  However, I see no need for students to make such a generalization.  Indeed in the case of Diane’s midpoint analogy, she appeared to be simply mimicking the first construction in a second one.  I feel that she only assumed that the two cases were similar and not that they both resulted from a common cause or “general principal.”  If I might draw an analogy myself, it is similar to the idea that a shoe may be acted upon by a dog in the same way that it would act upon a bone.  The dog is able to recognize the similarity without supposing a general principal shared by the two objects.  Thus, analogy is distinct from both induction and abduction and should be regarded as a separate form of ampliative inference or some other form of inference which may serve as pre-conjectural plausible reasoning.


As I have mentioned in my analysis of Diane’s teaching experiments, analogy and assimilation into a scheme may be kept distinct if we consider the student’s experience.  First of all, schemes may only be employed after they have been developed through past experience.  If the situations being compared are both new to the student, he or she cannot be assimilating either of them into a non-existent scheme.  Evidence that this is the case may be offered by mimicking one situation in acting upon the other, whereas the use of schemes should involve well-defined actions on the new situation.  Also, in assimilation, students disregard differences.  In analogy, differences are not ignored; rather, they are reduced to common key concepts.  This distinction may not be as obvious as the first, because even in verbalizing students may claim that there is “no difference,” when they are referring to key concepts rather than particular aspects of the situations.


So far, I have focussed upon pre-conjectural plausible reasoning, though pre-conjectural and post-conjectural plausible reasoning often overlap.  In either case, geometry students depend upon visualization.  Visualizations determine the aspects of a situation upon which students will focus.  Focussing upon particular aspects versus others in a construction seems to trigger different schemes and images.  Pat Thompson’s claim that “mathematical reasoning at all levels is firmly grounded in imagery” (Thompson, 1996, 267) accents the subsequent effects that focus could have on imagery.  Indeed, in the teaching experiments, I have cited several situations in which a student’s reasoning seemed dependent upon focus.  Graham, himself, even noted that his reasoning in proving the exterior angle theorem was hindered because he initially focussed upon one particular line rather than another.


Images may also include actions such as spatial operations.  All of the students in this study used spatial operations in their arguments, though they were most prevalent in post-conjectural plausible reasoning.  Students would argue that two sides or angles were equivalent because they were mirror images of one another in a particular reflection.  In these cases, the arguments seemed deductive in nature, because they argued that one statement was a logical result of another.


Visualization played an even greater role in Graham’s reasoning.  Particularly, spatial operations permeated his images of geometrical figures, relationships between figures and even his methods of recalling relations.  It is not so surprising, then, that he should rely upon them in forming conjectures.  In fact, in his abduction concerning rhombus angles, he identified a reflection as the general principal causing the relation: “It just matters if they’re the same shape on either side when it’s reflected.”  Thus, visualization and spatial operations may play key roles in forming and in supporting conjectures.  However, the fact that Graham used them so often in his reasoning is unique.  Graham had a great deal of experience operating on geometrical figures with his computer.  This only exemplifies Piaget’s firmly grounded theory that “all knowledge originates in action”; Graham’s actions on his computer offered to him a strong background in spatial operation.

Though the role of induction in mathematics may not be clear, researchers seem to agree that deductive reasoning is not included in pre-conjectural plausible reasoning (Polya, 1954; Fann, 1970; Chazan and Houde, 1989).  In fact, Polya makes a further distinction: “we secure our mathematical knowledge by demonstrative reasoning (logical deduction), but we support our conjectures by plausible reasoning” (vol. I, p. v).  However, the tenets of constructivism call into question the “security” provided by deduction.  At least with tenth-grade geometry students, who are only beginning to understand proofs, such arguments may be no more than plausible reasoning.  Thus, Polya’s distinction may be reasonable in formal mathematics, but inapplicable to high school students.

Even after Graham had successfully argued (deductively) that the exterior angle measure of a triangle is equal to the sum of the opposite two interior angle measures, he still felt obliged to measure the angles.  Diane also, upon completing her deductive argument in the first highlighted conjecture, did not seem certain of her conclusion; rather, she awaited my approval for confirmation.  These students had not secured their knowledge by deduction.  Measurement and teacher approval seemed more credible to them.  In fact, attempts at deduction usually began with the goal of satisfying my questions and not confirming their own conjectures.  Still, deductive reasoning may have added plausibility to their conjectures, and their efforts to reason this way often yielded further conjectures.

I found evidence of pre-conjectural plausible reasoning within students’ deductive reasoning.  This is not to say that the deductive reasoning itself was pre-conjectural, but that the logical steps between deductive arguments in a proof leave room for further conjectures.  The most notable case of this occurred in Graham’s last highlighted conjecture.  He conjectured the importance of the straight angle sum, which related the exterior angle to an interior one.  This relation was a key property of the sum that fit his goal of relating the exterior angle to the two opposite interior angles.  So, deductive reasoning may constitute plausible reasoning and even include conjectures within its frame.

At least in high school geometry, it is useful to adopt a broad definition of conjecture and plausible reasoning.  Students’ reasoning cannot be fitted into formal methods of induction and deduction any more than the historical development of mathematics can be described by the formal systems that mathematicians create.  If we wish to avoid the “authoritarian air” of mathematics (Lakatos, 1976, p. 142), then conjecture and plausible reasoning should be determined by their role in student reasoning.  I have attempted to address the role of conjecture and plausible reasoning in high school geometry, as well as the activities associated with them.  My experiences in working with the three students in this study provide me with a new perspective in understanding their reasoning.  This is a perspective that respects individual development of mathematics and one which I find useful in understanding learning.
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� This quote appears in von Glasersfeld, 1987 (p. 193).  I take it to apply to all humans equally, and use it as such to guide this chapter.


� In “How to Use Conjecturing and Microcomputers to Teach Geometry,” Daniel Chazan and Richard Houde describe their design of a student conjecture based course for high school students.  Though their approach strongly supports student conjecture, their epistemology and definition of conjecture differs from those adopted in this study, as is discussed in the next chapter.


� This is a term used by Piaget, whose meaning for the word is interpreted by von Glasersfeld.


� Again, Von Glasersfeld credits Piaget with these definitions, this time in direct quotation.


� This quote first appeared in Pierce’s Theory of Abduction, by Fann (1970).  I first heard the term “abduction” in a conversation with Pat Thompson, in which he told me that every induction first requires an abduction.  I infer from this that to begin reflecting on and comparing past experiences, we must begin with one experience and develop some principle that is to be applied to each succeeding experience.


� This quote first appeared in Polya’s How to Solve It, but is quoted here from a chapter by Wilson (James), Fernandez and Hadaway.
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