MAT 195 - Fall Quarter 2002
 TEST 4 - Answers

NAME

Show work and write clearly.

For \#1-5, find the derivative. Simplify all answers.

1. (6 pts.) $y=e^{\sin (5 x)}$ ANS: (use chain rule): $y^{\prime}=5 \cos (5 x) e^{\sin (5 x)}$
2. (6 pts.) $y=\frac{x}{\sqrt{7-3 x}}$ ANS: (use quotient and chain rules):

$$
y^{\prime}=\frac{\sqrt{7-3 x}(1)-x \frac{1}{2}(7-3 x)^{-1 / 2}(-3)}{(\sqrt{7-3 x})^{2}}=\frac{\sqrt{7-3 x}+\frac{3}{2} x(7-3 x)^{-1 / 2}}{7-3 x}
$$

3. (6 pts.) $y^{5}+x^{2} y^{3}=1+y e^{x^{2}}$ ANS: (use implicit differentiation and solve for y^{\prime}. use product rule for $x^{2} y^{3}$ and product and chain rules for $\left.y e^{x^{2}}\right)$:
$\Rightarrow 5 y^{4} \cdot y^{\prime}+2 x \cdot y^{3}+x^{2} \cdot 3 y^{2} \cdot y^{\prime}=0+y^{\prime} e^{x^{2}}+y \cdot e^{x^{2}} \cdot 2 x$
Rearrange so that all terms with y^{\prime} are on one side of equal sign:
$\Rightarrow-y^{\prime} e^{x^{2}}+5 y^{4} \cdot y^{\prime}+x^{2} \cdot 3 y^{2} \cdot y^{\prime}=y \cdot e^{x^{2}} \cdot 2 x-2 x \cdot y^{3}$
Factor out y^{\prime} and solve for y^{\prime} :
$\Rightarrow y^{\prime}\left(-e^{x^{2}}+5 y^{4}+3 x^{2} y^{2}\right)=2 x y e^{x^{2}}-2 x y^{3} \Rightarrow y^{\prime}=\frac{2 x y e^{x^{2}}-2 x y^{3}}{-e^{x^{2}}+5 y^{4}+3 x^{2} y^{2}}$
4. (6 pts.) $2 y^{3}+y^{2}-y^{5}=x^{4}-2 x^{3}+x^{2}$ ANS: (use implicit differentiation and solve for y^{\prime}):
$\Rightarrow 6 y^{2} \cdot y^{\prime}+2 y \cdot y^{\prime}-5 y^{4} \cdot y^{\prime}=4 x^{3}-6 x^{2}+2 x$
$\Rightarrow y^{\prime}\left(6 y^{2}+2 y-5 y^{4}\right)=4 x^{3}-6 x^{2}+2 x \Rightarrow y^{\prime}=\frac{4 x^{3}-6 x^{2}+2 x}{6 y^{2}+2 y-5 y^{4}}$
5. (7 pts.) $y=x^{\csc (2 x)}$ ANS: (use logarithmic differentiation):

Take \ln of both sides
$\Rightarrow \ln y=\ln x^{\csc (2 x)}$
Use power property of logs:
$\Rightarrow \ln y=\csc (2 x) \ln x$
Differentiate implicitly, using chain and product rules for right side:
$\Rightarrow \frac{1}{y} \cdot y^{\prime}=-2 \csc (2 x) \cot (2 x) \cdot \ln x+\csc (2 x) \cdot \frac{1}{x}$
Solve for y^{\prime} :
$\Rightarrow y^{\prime}=\left(-2 \csc (2 x) \cot (2 x) \cdot \ln x+\csc (2 x) \cdot \frac{1}{x}\right) y=\left(-2 \csc (2 x) \cot (2 x) \cdot \ln x+\csc (2 x) \cdot \frac{1}{x}\right) x^{\operatorname{css}(2 x)}$
6. (7 pts.) $y=\sec ^{-1}\left(e^{x}\right)$ ANS: (use chain rule): $y^{\prime}=\frac{1}{e^{x} \sqrt{\left(e^{x}\right)^{2}-1}} \cdot\left(e^{x}\right)=\frac{1}{\sqrt{e^{2 x}-1}}$

For \#7-9, find the second derivative. Simplify all answers.
7. (7 pts.) $y=\sqrt[3]{x}+\frac{1}{\sqrt[3]{x^{2}}}$ ANS: Rewrite as $y=x^{1 / 3}+x^{-2 / 3}$. So, $y^{\prime}=\frac{1}{3} x^{-2 / 3}-\frac{2}{3} x^{-5 / 3}$ and
$y^{\prime \prime}=-\frac{2}{3} \frac{1}{3} x^{-5 / 3}-\left(-\frac{5}{3}\right) \frac{2}{3} x^{-8 / 3}=-\frac{2}{9} x^{-5 / 3}+\frac{10}{9} x^{-8 / 3}$
8. (7 pts.) $x^{6}+y^{6}=1$ ANS: Rewrite as $y=\sqrt[6]{1-x^{6}}$ and use chain rule to find derivatives. $\underline{\text { OR }}$ differentiate implicitly: $6 x^{5}+6 y^{5} \cdot y^{\prime}=0 \Rightarrow y^{\prime}=\frac{-6 x^{5}}{6 y^{5}}=\frac{-x^{5}}{y^{5}}$. To find second derivative use chain and quotient rules: $y^{\prime \prime}=\frac{y^{5} \cdot-5 x^{4}-\left(-x^{5} \cdot 5 y^{4} \cdot y^{\prime}\right)}{\left(y^{5}\right)^{2}}=\frac{-5 y^{5} x^{4}+5 x^{5} y^{4} \cdot y^{\prime}}{y^{10}}$. This simplifies to $y^{\prime \prime}=\frac{y^{4}\left(-5 y x^{4}+5 x^{5} \cdot y^{\prime}\right)}{y^{10}}=\frac{-5 y x^{4}+5 x^{5} \cdot y^{\prime}}{y^{6}}$. Or you can substitute for y^{\prime} :
$y^{\prime \prime}=\frac{-5 y^{5} x^{4}+5 x^{5} y^{4} \cdot \frac{-x^{5}}{y^{5}}}{y^{10}}=\frac{-5 y^{6} x^{4}+5 x^{10}}{y^{11}}$
9. (7 pts.) $y=\ln (\cos (x))$ ANS: (Use chain rule): $y^{\prime}=\frac{1}{\cos x} \cdot-\sin x=-\tan x$. So, $y^{\prime \prime}=-\sec ^{2} x$.
10. (6 pts.) Find the absolute maximum and the absolute minimum values of f on the given interval: $f(x)=10+27 x-x^{3},[0,4]$. ANS: First, find critical numbers by setting derivative equal to zero: $f^{\prime}(x)=27-3 x^{2} \stackrel{\text { set }}{=} 0 \Rightarrow 27=3 x^{2} \Rightarrow 9=x^{2} \Rightarrow x= \pm 3$. Since we are considering the interval $[0,4]$, we need only consider the critical value $x=3$. Since the interval is a closed interval, find $f(0)=10, f(3)=64, f(4)=54$. Thus, there is an absolute minimum of 10 at $x=0$ and an absolute maximum of 64 at $x=3$.
11. (6 pts.) Sketch the graph of a function that satisfies the given conditions:
$f^{\prime}(-2)=f^{\prime}(5)=f^{\prime \prime}(-2)=f^{\prime \prime}(1)=0$
$f^{\prime}(x)>0$ when $x<5 \quad f^{\prime}(x)<0$ when $x>5$
$f^{\prime \prime}(x)>0$ when $-2<x<1 \quad f^{\prime \prime}(x)<0$ when $x<-2$ and $x>1$.
ANS: One possibility is:

This function has the following properties:
horizontal tangent lines at $x=-2$ and $x=5\left\{f^{\prime}(-2)=f^{\prime}(5)=0\right\}$,
is concave up on $[-2,1]\left\{f^{\prime \prime}(x)>0\right.$ when $\left.-2<x<1\right\}$,
is concave down elsewhere $\left\{f^{\prime \prime}(x)<0\right.$ when $x<-2$ and $\left.x>1\right\}$,
is increasing on $(-\infty, 5)\left\{f^{\prime}(x)>0\right.$ when $\left.x<5\right\}$,
is decreasing elsewhere $\left\{f^{\prime}(x)<0\right.$ when $\left.x>5\right\}$,
changes concavity at $x=-2$ and $x=1\left\{f^{\prime \prime}(-2)=f^{\prime \prime}(1)=0\right\}$.
12. (6 pts.) Given the graph of $f^{\prime \prime}(x)$ below, find the intervals of concavity and the inflection points for $f(x)$. EXPLAIN.

ANS: $f(x)$ is concave down when $f^{\prime \prime}(x)<0$ and concave up when $f^{\prime \prime}(x)>0$. Since the graph is $f^{\prime \prime}(x)$, $f^{\prime \prime}(x)<0$ when the graph is below the x-axis and $f^{\prime \prime}(x)>0$ when the graph is above the x-axis. Thus, $f(x)$ is concave up on $(2,4),(6,9)$ and concave down on $(0,2),(4,6)$. The inflection points are where $f(x)$ changes concavity or when $f^{\prime \prime}(x)=0$. Thus the inflection points are at $x=2,4,6$.
13. (6 pts.) Given the graph of $f^{\prime}(x)$ below, find
a. the intervals of increase or decrease of $f(x)$
b. the relative (local) maximum and minimum values of $f(x)$
c. the intervals of concavity and the inflection points for $f(x)$

EXPLAIN.

ANS: a. $f(x)$ is decreasing when $f^{\prime}(x)<0$ and increasing when $f^{\prime}(x)>0$. Since the graph is $f^{\prime}(x)$, $f^{\prime}(x)<0$ when the graph is below the x-axis and $f^{\prime}(x)>0$ when the graph is above the x-axis. Thus, $f(x)$ is increasing on $(-2,0),(4, \infty)$ and decreasing on $(-\infty,-2),(0,4)$.
b. The possible relative max/min points occur when $f^{\prime \prime}(x)=0$. These points are at $x=-2,0,2$, 4. Now use the First Derivative Test to determine whether a max or min occurs at these points. If a function increases to a point $\left(f^{\prime}(x)>0\right.$ or $f^{\prime}(x)$ is above the x-axis) then decreases after the point $\left(f^{\prime}(x)<0\right.$ or $f^{\prime}(x)$ is below the x-axis), then a max occurs at the point. There is a similar argument for determining a min. Thus, a relative max occurs at $x=0$ and a relative min occurs at $x=-2,4$.
c. The inflection points occur when $f^{\prime \prime}(x)=0$. Since the graph is $f^{\prime}(x)$, the points where the $f^{\prime \prime}(x)=0$ are the points where $f^{\prime}(x)$ has horizontal tangent lines (i.e., where the derivative of $f^{\prime}(x)$ is zero). Thus, the inflection points occur at $\mathrm{x}=-1,1,2,3,5$. Lastly, $f(x)$ is concave down when $f^{\prime \prime}(x)<0$ and concave up when $f^{\prime \prime}(x)>0$. Since the graph is $f^{\prime}(x)$, the second derivative is the derivative of $f^{\prime}(x)$ (i.e., the second derivative describes whether $f^{\prime}(x)$ is increasing $\left(f^{\prime \prime}(x)>0\right)$ or decreasing $\left(f^{\prime \prime}(x)<0\right)$. Thus, $f(x)$ is concave up $\left(f^{\prime \prime}(x)>0\right.$ or $f^{\prime}(x)$ increasing up to right) on $(-\infty,-1)$, $(1,2),(3,5)$ and is concave down $\left(f^{\prime \prime}(x)<0\right.$ or $f^{\prime}(x)$ decreasing down to right) on $(-1,1),(2,3),(5, \infty)$.
14. (6 pts.) Given the graph of $f(x)$ below, find
a. the intervals of increase or decrease $f(x)$
b. the relative (local) maximum and minimum values $f(x)$
c. the intervals of concavity and the inflection points for $f(x)$

EXPLAIN.

ANS: a. Since the graph is $f^{\prime}(x)$, consider the graph directly. Thus, $f(x)$ is increasing on $(1,3),(5,7)$, $(8,9)$ and decreasing on $(0,1),(3,5),(7,8)$.
b. A relative max occurs at $x=0,3,7$ and a relative min occurs at $x=1,5,8$.
c. $f(x)$ is concave up on $(0,2),(4,6),(7.5,9)$ and is concave down on $(2,4),(6,7.5)$. The inflection points occur when the concavity changes and occur at $x=2,4,6,7.5$.
15. (5 pts.) Sketch the graph of a function whose first and second derivatives are always negative. EXPLAIN.

ANS: When the first derivative is negative, the function decreasing and when the second derivative is negative, the function concave down. Here is one possibility:

16. (6 pts.) Find the relative (local) and absolute (global) maximum and minimum value(s) and the inflection point(s) of the function, if any. EXPLAIN. [Find exact values - estimated values will not receive credit.] $f(x)=x^{3}-3 x^{2}-5 x+19$

ANS: The possible max/min of a function occur when $f^{\prime}(x)=0 . f^{\prime}(x)=3 x^{2}-6 x-5 \stackrel{\text { set }}{=} 0$. So, by the quadratic equation, $x=\frac{3 \pm 2 \sqrt{6}}{3}$. The possible inflection points of a function occur when $f^{\prime \prime}(x)=0$. $f^{\prime \prime}(x)=6 x-6 \stackrel{\text { set }}{=} 0$. So, the only inflection point occurs at $x=1$. Since the domain of the function is $(-\infty, \infty)$ and since the function is odd, there are no absolute \max / min. Thus, we need to check to see if a local max or min occurs at $x=\frac{3 \pm 2 \sqrt{6}}{3}, x=-0.6,2.6$. So, $f^{\prime \prime}(-0.6)<0$, so there is a local max at $x=\frac{3-2 \sqrt{6}}{3}$ and $f^{\prime \prime}(2.6)>0$, so there is a local min at $x=\frac{3+2 \sqrt{6}}{3}$.

