MAT 195 - Spring Quarter 2002
 Final

NAME

Show work and write clearly.

1. State the definition of the derivative as a function.
2. Use the definition of the derivative to find the derivative of $f(x)=\frac{1}{2 x+1}$.
3. Algebraically evaluate the limit, (if it exits): $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+4}{x^{2}+x-6}$. If the limit does not exist, explain why.
4. Algebraically evaluate the limit: $\lim _{x \rightarrow+\infty} \frac{4-3 x}{\sqrt{2 x^{2}-5}}$. If the limit does not exist, explain why.
5. Find the derivative: $y=\left(\tan ^{2}(x)-x^{2}\right)^{3}$.
6. Find the derivative: $\frac{3}{x}-\frac{3}{y}=\sqrt{x y}$.
7. Find the derivative: $f(x)=x^{3} \sin x \cos x$.
8. Find the derivative: $f(x)=\frac{3 x^{3}+27}{x+x^{2}}$.
9. Find the second derivative: $f(x)=3 \sin ^{2}(2 x)-4 \cos ^{2}(2 x)$.
10. Find the equation of the tangent line to $f(x)=x^{1 / 3}$ at $x=8$.
11. For what values of x does the function $f(x)=4 x^{3}-7 x^{2}+2 x-1$ have a horizontal tangent line?
12. A container with square base, vertical sides, and open top is to be made from $1000 \mathrm{ft}^{2}$ of material.

Find the dimensions of the container with greatest volume.
13. On what interval(s) is $f(x)=\sqrt[3]{(x-2)^{2}}$ continuous? One what interval(s) is $f(x)$ differentiable? Explain.
14. Find an antiderivative of $f^{\prime}(t)=\frac{5 t^{2}+7}{t^{4 / 3}}$.
15. Calculate the left-hand, right-hand, midpoint and trapezoid sums with 250 subdivisions. Which of these sums are overestimates and which are underestimates? Explain. Estimate the value of the definite integral. Explain. $\int_{-2}^{-0.5}\left(\sqrt[3]{x}+\frac{1}{\sqrt[3]{x^{2}}}\right) d x$
16. Find all points of discontinuity for the function $f(x)=\frac{x-2}{|x|-2}$. Determine whether the discontinuity is removable or not.
17. If $f(x)=2 x+\ln (x)$, find $f^{-1}(2)$.
18. Express the function $r(x)=\frac{1}{\sqrt{3-\sin ^{2} x}}$ as a composition of four functions.
19. Find the domain and range of $f(x)=\sqrt{4-3 x^{2}}$.
20. Find all vertical and horizontal asymptotes of $f(x)=\frac{x^{2}}{x^{2}-2 x-3}$.

