MAT 195 - Spring Quarter 2002 TEST 2

NAME
Show work and write clearly.

1. The displacement (in meters) of an object moving in a straight line is given by $s=1-\frac{t}{4}+2 t^{2}$, where t is measured in seconds.
a. Find the average velocity over the following time periods:
(i) $[1,2]$
(ii) $[1,1.5]$
(iii) $[1,1.1]$
b. Estimate the instantaneous velocity (to 4 decimal places) when $t=1$. Explain.
2. Referring to the graphs below, find each limit, if it exists. If the limit does not exist, explain why.

a. $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$
b. $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$
c. $\lim _{x \rightarrow-1} \frac{g(x)}{f(x)}$
d. $\lim _{x \rightarrow 2}[x \cdot g(x)]$
e. $\lim _{x \rightarrow-1}[f(x)+g(x)]$
f. $\lim _{x \rightarrow 1^{-}}[x+f(x)]$
g. $\lim _{x \rightarrow 1^{+}} \frac{g(x)}{f(x)}$
3. $f(x)= \begin{cases}\sqrt{3-x} & x \leq 1 \\ x^{2} & 1<x<3 \\ 27 / x & x \geq 3\end{cases}$
a. Evaluate each limit, if it exists. If the limit does not exist, explain why.
i. $\lim _{x \rightarrow 1^{-}} f(x)$
ii. $\lim _{x \rightarrow 1^{+}} f(x)$
iii. $\lim _{x \rightarrow 1} f(x)$
iv. $\lim _{x \rightarrow 3^{-}} f(x)$
v. $\lim _{x \rightarrow 3^{+}} f(x)$
vi. $\lim _{x \rightarrow 3} f(x)$
vii. $\lim _{x \rightarrow 9} f(x)$
viii. $\lim _{x \rightarrow-6} f(x)$
b. What is the domain of $f(x)$.
c. Where is $f(x)$ discontinuous? Explain.
d. Where is $f(x)$ not differentiable? Explain.
4. Find the limits, algebraically.
a. $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-9}}{2 x-6}$
b. $\lim _{x \rightarrow 0} \frac{(1+h)^{4}-1}{h}$
c. $\lim _{x \rightarrow-\infty}(x-\sqrt{x})$
d. $\lim _{x \rightarrow \infty}(x+\sqrt{x})$
5. Find the vertical and horizontal asymptotes for $f(x)=\left(a^{-1}+x^{-1}\right)^{-1}$, where $a>0$.
6. Use the definition of a derivative of f at a :
a. $f(x)=x^{3}-2 x, \mathrm{a}=2$.
b. Find the equation of the tangent line to f at $x=2$.
7. If $f(x)=x-\frac{2}{x}$, estimate $f^{\prime}(3)$ to 4 decimals. Explain.
8. The graph of g is given below.

a. For what value(s) of x is $g(x)$ not differentiable? Justify your answer(s).
