MAT 195 - Spring Quarter 2002
 TEST 2 - Answers

NAME
Show work and write clearly.

1. The displacement (in meters) of an object moving in a straight line is given by $s=1-\frac{t}{4}+2 t^{2}$, where t is measured in seconds.
a. Find the average velocity over the following time periods:
(i) $[1,2]$

ANS: [1, 2] means the interval from $t=1$ to $t=2$. Then $s(1)=2.75$ and $s(2)=8.5$. The average velocity is the slope of the secant line between the points $(1,2.75)$ and $(2,8.5)$ which is $\frac{8.5-2.75}{2-1}=5.75 \mathrm{~m} / \mathrm{s}$.
(ii) $[1,1.5]$

ANS: Refer to the answer above. $s(1.5)=5.125$ and the average velocity is $4.75 \mathrm{~m} / \mathrm{s}$. (iii) $[1,1.1]$

ANS: Refer to the answer above. $s(1.1)=3.145$ and the average velocity is $3.95 \mathrm{~m} / \mathrm{s}$.
b. Estimate the instantaneous velocity (to 4 decimal places) when $t=1$. Explain.

ANS: There are several ways to answer this question. One way is to find the slope of the secant line when the two points are very close: $(1,2.75)$ and $(1.0001,2.75038)$ which is $3.8 \mathrm{~m} / \mathrm{s}$.
2. Referring to the graphs below, find each limit, if it exists. If the limit does not exist, explain why.

a. $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{1}{2}$
c. $\lim _{x \rightarrow-1} \frac{g(x)}{f(x)}$ DNE because $\lim _{x \rightarrow-1} f(x)=0$
d. $\lim _{x \rightarrow 2}[x \cdot g(x)]=2 \cdot-2=-4$
b. $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$ DNE because $\lim _{x \rightarrow 1} f(x)$ DNE
e. $\lim _{x \rightarrow-1}[f(x)+g(x)]=0+1=1$
f. $\lim _{x \rightarrow 1^{-}}[x+f(x)]=1+1=2$
g. $\lim _{x \rightarrow 1^{+}} \frac{g(x)}{f(x)}=\frac{0}{-1}=0$
3. $f(x)= \begin{cases}\sqrt{3-x} & x \leq 1 \\ x^{2} & 1<x<3 \\ 27 / x & x \geq 3\end{cases}$
a. Evaluate each limit, if it exists. If the limit does not exist, explain why.
i. $\lim _{x \rightarrow 1^{-}} f(x)=\sqrt{2}$
ii. $\lim _{x \rightarrow 1^{+}} f(x)=1$
iii. $\lim _{x \rightarrow 1} f(x)$ DNE because directional limits are not the same
iv. $\lim _{x \rightarrow 3^{-}} f(x)=9$
v. $\lim _{x \rightarrow 3^{+}} f(x)=9$
vi. $\lim _{x \rightarrow 3} f(x)=9$
vii. $\lim _{x \rightarrow 9} f(x)=3$
viii. $\lim _{x \rightarrow-6} f(x)=3$
b. What is the domain of $f(x)$.

ANS: $(-\infty, \infty)$
c. Where is $f(x)$ discontinuous? Explain.

ANS: At $x=1$ because the limit DNE.
d. Where is $f(x)$ not differentiable? Explain.

ANS: At $x=1$ because the function is not continuous and at $x=3$ because cusp.
4. Find the limits, algebraically.
a. $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-9}}{2 x-6}=\lim _{x \rightarrow \infty} \frac{\sqrt{1-\frac{9}{x^{2}}}}{2-\frac{6}{x}}=\frac{\sqrt{1}}{2}=\frac{1}{2} \quad$ b. $\lim _{x \rightarrow 0} \frac{(1+h)^{4}-1}{h}=$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1+4 h+6 h^{2}+4 h^{3}+h^{4}-1}{h}= \\
& \lim _{x \rightarrow 0} \frac{h\left(4+6 h^{1}+4 h^{2}+h^{3}\right)}{h}= \\
& \lim _{x \rightarrow 0} 4+6 h^{1}+4 h^{2}+h^{3}=4
\end{aligned}
$$

c. $\lim _{x \rightarrow-\infty}(x-\sqrt{x})$ DNE because the function
d. $\lim _{x \rightarrow \infty}(x+\sqrt{x})=\lim _{x \rightarrow \infty} x+\lim _{x \rightarrow \infty} \sqrt{x}=\infty+\infty=\infty$ is not defined for $x<0$
5. Find the vertical and horizontal asymptotes for $f(x)=\left(a^{-1}+x^{-1}\right)^{-1}$, where $a>0$.

ANS: $f(x)=\frac{1}{\frac{1}{a}+\frac{1}{x}}$. To find vertical asymptotes, set denominator to zero: $\frac{1}{a}+\frac{1}{x}=0$, which implies the vertical asymptote is at $x=-a$. To find the horizontal asymptotes find the limit at infinity: $\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{a}+\frac{1}{x}}=\frac{1}{\frac{1}{a}}=a$. So, the horizontal asymptote is at $y=a$.
6. Use the definition of a derivative of f at a :
a. $f(x)=x^{3}-2 x, \mathrm{a}=2$.

ANS: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{(a+h)^{3}-2(a+h)-\left(a^{3}-2 a\right)}{h}=$
$\lim _{h \rightarrow 0} \frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h-a^{3}+2 a}{h}=\lim _{h \rightarrow 0} \frac{3 a^{2} h+3 a h^{2}+h^{3}-2 h}{h}=$
$\lim _{h \rightarrow 0} \frac{h\left(3 a^{2}+3 a h^{1}+h^{2}-2\right)}{h}=\lim _{h \rightarrow 0} \frac{h\left(3 a^{2}+3 a h^{1}+h^{2}-2\right)}{h}=\lim _{h \rightarrow 0}\left(3 a^{2}+3 a h^{1}+h^{2}-2\right)=\left(3 a^{2}-2\right)$
So, $f^{\prime}(2)=10$. This is the slope of the tangent line at $x=2$.
b. Find the equation of the tangent line to f at $x=2$.

ANS: $f(2)=4$. So, the equation of the tangent line is: $y-4=10(x-2)$.
7. If $f(x)=x-\frac{2}{x}$, estimate $f^{\prime}(3)$ to 4 decimals. Explain.

ANS: There are several ways to estimate $f^{\prime}(3)$. One way is as follows: $f(3)=3-\frac{2}{3}=\frac{7}{3}$ and $f(3.0001) \approx 2.33346$. So, $f^{\prime}(3)=1.2222$ is the slope of the secant line as the two points get closer:
8. The graph of g is given below.

a. For what value(s) of x is $g(x)$ not differentiable? Justify your answer(s).

ANS: $g(x)$ not differentiable at:
$x=-2$ because vertical tangent line, $x=1$ because $g(x)$ is not continuous,
$x=4$ because cusp.

