MAT 254 - Fall Quarter 2002
 Test 1 - Answers

NAME
Show work and write clearly.

1. (20 pts.) Without using the allsums program,
(a). Estimate the area under the graph of $f(x)=\frac{1}{x^{2}}$ from $x=2$ to $x=5$ using three approximating rectangles and right endpoints. Sketch the graph and the rectangles. Is your estimate an underestimate or an overestimate? Explain.

ANS:

$\Delta x=\frac{b-a}{n}=\frac{5-2}{3}=1$ is the width of the approximating rectangles.
RHS $=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x$.
$R H S=f(3) \Delta x+f(4) \Delta x+f(5) \Delta x=\frac{1}{3^{2}}(1)+\frac{1}{4^{2}}(1)+\frac{1}{5^{2}}(1)=\frac{769}{3600}$.
Since the function is decreasing on $[2,5]$, the RHS is an underestimate.
(b). Repeat using left endpoints.

ANS:

$\Delta x=\frac{b-a}{n}=\frac{5-2}{3}=1$ is the width of the approximating rectangles.

LHS $=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x$.
LHS $=f(2) \Delta x+f(3) \Delta x+f(4) \Delta x=\frac{1}{2^{2}}(1)+\frac{1}{3^{2}}(1)+\frac{1}{4^{2}}(1)=\frac{61}{144}$.
Since the function is decreasing on [2,5], the LHS is an overestimate.
(c). Repeat using midpoints.

ANS:

$\Delta x_{i}=\frac{b-a}{n}=\frac{5-2}{3}=1$ is the width of the approximating rectangles.
MIDPT $=f\left(\frac{x_{0}+x_{1}}{2}\right) \Delta x+f\left(\frac{x_{1}+x_{2}}{2}\right) \Delta x+f\left(\frac{x_{2}+x_{3}}{2}\right) \Delta x$.
MIDPT $=f(2.5) \Delta x+f(3.5) \Delta x+f(4.5) \Delta x=\frac{1}{2.5^{2}}(1)+\frac{1}{3.5^{2}}(1)+\frac{1}{4.5^{2}}(1) \cong 0.2910$
Since the function is concave up on [2,5], the MIDPT is an underestimate.
(d). Which gives the best estimation? Explain.

ANS: The MIDPT sum is the best estimate because each approximating rectangle has an overestimate and underestimate component.
2. (50 pts.) Using Part 2 of the Fundamental Theorem of Calculus to evaluate the integral, or explain why it does not exist. For trig functions, you may estimate the answer to 4 decimal places.
a. $\int_{1}^{\sqrt{3}} \frac{6}{1+x^{2}} d x$ ANS: $\left.6 \tan ^{-1} x\right|_{x=1} ^{\sqrt{3}}=6\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} 1\right)=\frac{\pi}{2}$
b. $\int_{1}^{9} \frac{5}{3 x} d x$ ANS: $\frac{5}{3} \int_{1}^{9} x^{-1} d x=\left.\frac{5}{3}(\ln x)\right|_{x=1} ^{9}=\frac{5}{3}(\ln 9-\ln 1)=\frac{5}{3} \ln 9 \approx 3.6620$
c. $\int_{-1}^{-3} \frac{2}{x^{6}} d x$ ANS: $2 \int_{-1}^{-3} x^{-6} d x=2\left(\frac{1}{-5} x^{-5}\right){ }_{x=-1}^{-3}=-\frac{2}{5}\left((-3)^{-5}-(-1)^{-5}\right)=-\frac{2}{5}\left(-\frac{1}{243}+1\right)$
d. $\int_{-\pi / 3}^{-\pi / 2} \sec x \tan x \sqrt{1+\sec x} d x$ ANS: DNE because $\sec (-\pi / 2)$ is undefined.
e. $\int_{0}^{1 / 2} \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x$ ANS: Use substitution - let $u=\sin ^{-1} x$, then $d u=\frac{1}{\sqrt{1-x^{2}}} d x$. When
$x=0, u=0$ and when $x=1 / 2, u=\pi / 6$. The integral is now $\int_{0}^{\pi / 6} u d u=\left.\frac{1}{2} u^{2}\right|_{u=0} ^{\pi / 6}=\frac{\pi^{2}}{72}$.
3. (10 pts.) Using Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.
a. $g(u)=\int_{u}^{3} \frac{1}{x+x^{2}} d x$ ANS: $-\int_{3}^{u} \frac{1}{x+x^{2}} d x \Rightarrow g^{\prime}(u)=-\frac{1}{u+u^{2}}$
4. (10 pts.) Calculate the left-hand, right-hand, midpoint and trapezoid sums with 100 subdivisions. Which of these sums are overestimates and which are underestimates? Explain. Estimate the value of the definite integral. Explain. $\int_{-2}^{3}\left(1+\sqrt{9-x^{2}}\right) d x$

ANS:

Using allsums: LHS $=17.6385 ;$ RHS $=17.5266 ;$ MIDPT $=17.5902 ;$ TRAP $=17.5825$.
The function is increasing on $[-2,0)$ and decreasing on $(0,3]$. The function is an even function, i.e., it is symmetric w.r.t. the y-axis. Thus the area under the curve from $x=-2$ to $x=0$ is the same as the area under the curve from $x=0$ to $x=2$. Thus, to determine the type of estimates for the RHS and LHS, we need only consider the area under the curve from $x=2$ to $x=3$. Since the function is decreasing on [2, 3], the RHS is an underestimate and the LHS is an overestimate. Since the curve is concave down on $[-2,3]$, TRAP is an underestimate and MIDPT is an overestimate. Finally, there are various answers for the estimate of the value of the definite integral - it must be between MIDPT and TRAP.
5. (10 pts.) The graph of g is shown below. The results from the left, right, midpoint and trapezoid rules used to approximate $\int_{0}^{1} g(t) d t$, with the same number of subdivisions for each rule, are as follows: $-0.601,-0.632,-0.633,-0.664$.
a. Match each rule with its approximation. Explain.
b. Between which two approximations does the true value of the integral lie? Explain.

ANS: a. LHS $=-0.664 ;$ RHS $=-0.601 ;$ MIDPT $=-0.632 ;$ TRAP $=-0.633$. The function is increasing on $[0,1]$, so the RHS is an overestimate and the LHS is an underestimate. Thus, the RHS needs to be the largest value and the LHS needs to be the smallest value $(-0.601>-0.664)$. The function is concave down, so the TRAP is an underestimate and the MIDPT is an overestimate.
b. The true value of the integral, A is between the MIDPT and TRAP sums. That is, TRAP $<\mathrm{A}<$ MIDPT.

