MAT 254 - Fall Quarter 2002

Test 2 - Answers
NAME \qquad
Show work and write clearly.

1. (20 pts.) Sketch the region enclosed by the given curves. Sketch the area.

$$
f(x)=x^{2}+1 \text { and } g(x)=3-x^{2} \text { between } x=-2 \text { and } x=2 .
$$

ANS: The region is shown below:

Since neither function is greater than or equal to the other function on $[-2,2]$, then the area is defined as:

$$
A=\int_{-2}^{2}|f(x)-g(x)|
$$

The intersection points of the two functions can be found by setting $f(x)=g(x)$ and solving for x. The intersection points are $\mathrm{x}=-1,1$. So the integral can be separated into three parts:

$$
\begin{aligned}
A & =\int_{-2}^{-1}[f(x)-g(x)] d x+\int_{-1}^{1}[g(x)-f(x)] d x+\int_{1}^{2}[f(x)-g(x)] d x \\
& =2 \int_{-2}^{-1}[f(x)-g(x)] d x+\int_{-1}^{1}[g(x)-f(x)] d x \\
& =2 \int_{-2}^{-1}\left[x^{2}+1-\left(3-x^{2}\right)\right] d x+\int_{-1}^{1}\left[3-x^{2}-\left(x^{2}+1\right)\right] d x \\
& \left.=2 \int_{-2}^{-1}\left[2 x^{2}-2\right)\right] d x+\int_{-1}^{1}\left[2-2 x^{2}\right] d x \\
& =2\left(\frac{2 x^{3}}{3}-2 x\right)_{-2}^{-1}+\left(-\frac{2 x^{3}}{3}+2 x\right)_{-1}^{1}=8
\end{aligned}
$$

2. (20 pts.) a. Find the average value of $f(x)=\frac{\ln x}{x}+1$ from $x=1$ to $x=2$.
b. Find c such that average value of f equals $f(c)$. Explain.
c. Sketch the graph of the function and a rectangle whose area is the same as the area under the graph of f.

ANS:
a. $f_{\text {avg }}=\frac{1}{2-1} \int_{1}^{2}\left(\frac{\ln x}{x}+1\right) d x=\int_{1}^{2} \frac{\ln x}{x} d x+\int_{1}^{2} 1 d x$

Use substitution for the first integral:
let $u=\ln x ; \mathrm{d} u=\mathrm{d} x / x$. When $x=1, u=0$; when $x=2, u=\ln 2$.

So, we have $f_{\text {avg }}=\int_{0}^{\ln 2} u d u+\int_{1}^{2} 1 d x=\left(\frac{u^{2}}{2}\right)_{0}^{\ln 2}+\left.x\right|_{1} ^{2}=\frac{(\ln 2)^{2}}{2}+1$
b. $f(c)=\frac{\ln c}{c}+1=\frac{(\ln 2)^{2}}{2}+1 \approx 1.2402 \Rightarrow \frac{\ln c}{c} \approx 0.2402$.

There are two ways to find c :
Method 1: find root of $\ln c-0.2402 c=0$
Method 2: use area of rectangle: $\mathrm{A}=($ width $)($ height $)=(2-1)(1.2402)=1.2402$. Now zoom and trace on calc until $\mathrm{y}=1.2402$. Then $c=x=1.4$.
c.

3. (20 pts.) Use the disk method to find the volume of the solid formed by revolving the region between $y=x^{2}$ and $y=x^{3}$ about the x-axis. Sketch the area.

ANS:

To find a and b, set functions equal to one another and solve for x.
$V=\pi \int_{a}^{b}\left[\left(R_{o}\right)^{2}-\left(R_{i}\right)^{2}\right] d x$
$V=\pi \int_{0}^{1}\left[\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}\right] d x=\pi \int_{0}^{1}\left(x^{4}-x^{6}\right) d x=\pi\left(\frac{x^{5}}{5}-\frac{x^{7}}{7}\right){ }_{0}^{1}=\frac{2}{35} \pi$
4. (20 pts.) Use the disk method to find the volume of the solid formed by revolving the region between $x=y^{2}$, the x-axis and $x=4$ about the line $x=6$. Sketch the area.

ANS:

$y=0$ at the x-axis. When $x=4, y=2$. So, $a=0$ and $b=2$.

$$
\begin{aligned}
& V=\pi \int_{a}^{b}\left[\left(R_{o}\right)^{2}-\left(R_{i}\right)^{2}\right] d x, \text { where } \mathrm{R}_{\mathrm{i}}=6-4=2 \text { and } \mathrm{R}_{\mathrm{o}}=6-\mathrm{x}=6-\mathrm{y}^{2} . \\
& V=\pi \int_{0}^{2}\left[\left(6-y^{2}\right)^{2}-(2)^{2}\right] d y=\pi \int_{0}^{2}\left(32-12 y^{2}+y^{4}\right) d y=\pi\left(32 y-4 y^{3}+\frac{y^{5}}{5}\right){ }_{0}^{2}=\frac{192}{5} \pi
\end{aligned}
$$

5. (20 pts.) Use the shell method to find the volume of the solid formed by revolving the region between $y=x^{2}$ and $y=4 x-x^{2}$ about the line $x=4$. Sketch the area.

ANS:

$h(x)=$ top function - bottom function.
$p(x)=$ axis of rotation $-x$.
$V=2 \pi \int_{0}^{2} p(x) h(x) d x=2 \pi \int_{0}^{2}(4-x)\left(\left(4 x-x^{2}\right)-\left(x^{2}\right)\right) d x=2 \pi \int_{0}^{2}(4-x)\left(4-2 x^{2}\right) d x$
$=2 \cdot 2 \pi \int_{0}^{2}(4-x)\left(2-x^{2}\right) d x=4 \pi \int_{0}^{2}\left(8 x-6 x^{2}+x^{3}\right) d x=4 \pi\left(4 x^{2}-2 x^{3}+\frac{x^{4}}{4}\right){ }_{0}^{2}=16 \pi$

