MAT 254 - Winter Quarter 2002
 Test 2 - Answers

NAME
Show work and write clearly.

1. (30 pts.) Without using the allsums program,
(a). Estimate the area (to 4 decimal places) under the graph of $f(x)=3 x+4 x^{2}-x^{3}$ from $x=2$ to $x=5$ using three approximating rectangles and right endpoints. Sketch the graph and the rectangles. Is your estimate an underestimate or an overestimate? Explain.
(b). Repeat using midpoints.

ANS:
(a).

$\Delta x=\frac{b-a}{n}=\frac{6-3}{3}=1$ is the width of the approximating rectangles.
$R_{3}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x=f(3) \Delta x+f(4) \Delta x+f(5) \Delta x$.
$=\left(3(3)+4(3)^{2}-(3)^{3}\right)(1)+\left(3(4)+4(4)^{2}-(4)^{3}\right)(1)+\left(3(5)+4(5)^{2}-(5)^{3}\right)(1)$
$=(9+36-27)(1)+(12+64-64)(1)+(15+100-125)(1)$
$=(18)(1)+(12)(1)+(-10)(1)=20$.
Since the function decreases more rapidly on $(3,5)$ than it increases on $(2,3)$, the RHS is an underestimate.

$\Delta x_{i}=\frac{b-a}{n}=\frac{5-2}{3}=1$ is the width of the approximating rectangles.
$M_{3}=f\left(\frac{x_{0}+x_{1}}{2}\right) \Delta x+f\left(\frac{x_{1}+x_{2}}{2}\right) \Delta x+f\left(\frac{x_{2}+x_{3}}{2}\right) \Delta x$
$=f(2.5) \Delta x+f(3.5) \Delta x+f(4.5) \Delta x$
$=\left(3(2.5)+4(2.5)^{2}-(2.5)^{3}\right)(1)+\left(3(3.5)+4(3.5)^{2}-(3.5)^{3}\right)(1)+\left(3(4.5)+4(4.5)^{2}-(4.5)^{3}\right)(1)$
$=(7.5+25-15.625)(1)+(10.5+49-42.875)(1)+(13.5+81-91.125)(1)$
$=(16.875)(1)+(16.625)(1)+(3.375)(1)=36.875=\frac{295}{8}$.
Since the function is concave down on $(2,5)$, the MIDPT is an overestimate.
2. (40 pts.) Use the Fundamental Theorem of Calculus to evaluate the integral, or explain why it does not exist.
a. $\int_{\pi}^{3 \pi}(x+\sin x) d x$ ANS: $\left.\left(\frac{x^{2}}{2}-\cos x\right)\right)_{x=\pi}^{3 \pi}=\frac{(3 \pi)^{2}}{2}+\cos (3 \pi)-\left(\frac{(\pi)^{2}}{2}-\cos (\pi)\right)$
$=\frac{9 \pi^{2}}{2}+1-\left(\frac{\pi^{2}}{2}+1\right)=4 \pi^{2} \approx 39.4784$
b. $\int_{0}^{2} e^{2 x} d x$ ANS: $\left.\frac{e^{2 x}}{2}\right|_{x=0} ^{2}=\frac{e^{2(2)}}{2}-\frac{e^{2(0)}}{2}=\frac{e^{4}}{2}-\frac{e^{0}}{2}=\frac{e^{4}}{2}-\frac{1}{2} \approx 26.7991$
c. $\int_{1}^{3} \frac{2}{\sqrt[3]{x^{2}}} d x$ ANS: $\left.\frac{2 x^{1 / 3}}{1 / 3}\right|_{x=1} ^{3}=6(3)^{1 / 3}-6(1)^{1 / 3}=6(3)^{1 / 3}-6 \approx 2.6535$
3. (10 pts.) Calculate the left-hand, right-hand, midpoint and trapezoid sums with 100 subdivisions. Which of these sums are overestimates and which are underestimates? Explain. Estimate the value of the definite integral. Explain. $\int_{0}^{3}\left[\ln \left(30-x^{3}\right)-2\right] d x$.
ANS: Using allsums: $\mathrm{L}_{100}=3.20645 ; \mathrm{R}_{100}=3.13738 ; \mathrm{M}_{100}=3.17292 ; \mathrm{T}_{100}=3.17192$.
The function is decreasing on $(0,3)$. Since the function is decreasing, the R_{100} is an underestimate and the L_{100} is an overestimate. Since the curve is concave down on $(0,3), \mathrm{T}_{100}$ is an underestimate and M_{100} is an overestimate. Finally, there are various answers for the estimate of the value of the definite integral - it must be between M_{100} and T_{100}.
4. (10 pts.) The graph of g is shown below. The results from the left, right, midpoint and trapezoid rules used to approximate $\int_{0}^{1} g(t) d t$, with the same number of subdivisions for each rule, are as follows: $0.601,0.632,0.633,0.664$.
a. Match each rule with its approximation. Explain.
b. Between which two approximations does the true value of the integral lie? Explain.

ANS: a . $\mathrm{LHS}=0.664 ;$ RHS $=0.601 ;$ MIDPT $=0.632 ;$ TRAP $=0.633$. The function is decreasing on $[0,1]$, so the LHS is an overestimate and the RHS is an underestimate. Thus, the RHS needs to be the largest value and the LHS needs to be the smallest value ($0.664>0.601$). The function is concave up, so the TRAP is an overestimate and the MIDPT is an underestimate.
5. (10 pts.) Without using the allsums program, is $\int_{-1}^{1} e^{x^{2}} d x$ positive, negative or zero? Explain.

ANS: The area between the curve and the x-axis between $x=-1$ and $x=1$ is above the x-axis, so the definite integral is positive.

