MAT 254 - Winter Quarter 2002

Test 3

NAME \qquad
Show work and write clearly.

1. (30 pts.)
a. Find the average value of $f(x)=-\sin x$ on $[0, \pi]$.

ANS: $f_{\text {ave }}=\frac{1}{\pi-0} \int_{0}^{\pi}-\sin x d x=\left.\frac{1}{\pi} \cos x\right|_{0} ^{\pi}=\frac{-1-1}{\pi}=\frac{-2}{\pi}$.
b. Find the value c such that $f(c)=f_{\text {ave }}$.

ANS: That is, find c such that $f(c)=-\sin c=-2 / \pi$. One method is to graph $y 1=-\sin x$ and $y 2=-2 / \pi$ on TI83 and find intersection:

Thus, there are two possible values of $c: \mathrm{c} \approx 0.6901$ and $\mathrm{c} \approx 2.4515$.
c. Sketch the graph of $f(x)$ and construct a rectangle over the interval whose area is the same as the area under the graph of $f(x)$ over the interval. ANS:

2. (48 pts.) Find the following integrals:
a. $\int \frac{y}{\sqrt{y+1}} d y$ ANS: let $u=y+1$, then $d u=d y$ and $y=u-1$. So, $\int \frac{y}{\sqrt{y+1}} d y=$ $\int \frac{u-1}{\sqrt{u}} d u=\int \frac{u}{\sqrt{u}} d u-\int \frac{1}{\sqrt{u}} d u=\int u^{1 / 2} d u-\int u^{-1 / 2} d u$ $=\frac{u^{3 / 2}}{3 / 2}-\frac{u^{1 / 2}}{1 / 2}+C=\frac{2(y+1)^{3 / 2}}{3}-2(y+1)^{1 / 2}+C$
b. $\int \tan ^{3}(5 x) \sec ^{2}(5 x) d x$ ANS: let $u=\tan (5 x)$, then $d u=5 \sec ^{2}(5 x) d x$. So,
$\int \tan ^{3}(5 x) \sec ^{2}(5 x) d x=\frac{1}{5} \int u^{3} d u=\frac{1}{5} \frac{u^{4}}{4}+C=\frac{1}{20} \tan ^{4}(5 x)+C$
c. $\int_{1}^{3 / 2}\left[\csc ^{2}(\cos (3 t))\right] \sin (3 t) d t$ ANS: let $u=\cos (3 t)$, then $d u=-3 \sin (3 t) d t$. When $t=1, u=-0.99$ and when $t=1.5, u=-0.21$. So, $\int_{1}^{3 / 2}\left[\csc ^{2}(\cos (3 t))\right] \sin (3 t) d t \approx-\frac{1}{3} \int_{-0.99}^{-0.21} \csc ^{2}(u) d u=\left.\frac{1}{3} \cot u\right|_{-0.99} ^{-0.21} \cong$ $[-4.7-(-0.66)] / 3=-1.35$.
d. $\int_{-\sqrt{2}}^{0} x\left(2-x^{2}\right)^{3} d x$ ANS: let $u=2-\mathrm{x}^{2}$, then $d u=-2 x d x$. When $x=-\sqrt{ } 2, u=0$ and when $x=0$, $u=2$. So, $\int_{0}^{2} x\left(2-x^{2}\right)^{3} d x=-\frac{1}{2} \int_{0}^{2} u^{3} d u=-\left.\frac{1}{2} \frac{u^{4}}{4}\right|_{0} ^{2}=-2$.
3. (22 pts.) Sketch the area between $y=x^{3}, y=-x, y=8$. Find the area.

ANS: Here is the sketch of the area:

$a=-8$ is the intersection point between $y=-x$ and $y=8 ; b=2$ is the intersection point between $y=x^{3}$ and $y=8$. To find the area between curves, we need to split the area into two parts:

Area $=\int_{-8}^{0}(8-(-x)) d x+\int_{0}^{2}\left(8-x^{3}\right) d x=\left(8 x+\frac{x^{2}}{2}\right)_{-8}^{0}+\left(8 x-\frac{x^{4}}{4}\right)_{0}^{2}$
$=0-\left[8(-8)+\frac{(-8)^{2}}{2}\right]+8(2)-\frac{2^{4}}{4}-0=32+16-4=44$

