Math 1431
Spring 2003 - Test \#3 - Answers
NAME
You are allowed to use your calculator. Show how you used the calculator to the questions below.
Explain all answers - answers with no explanation will receive only one-half credit.
Use complete sentences.

1. (20 points). Find the following probabilities:
a. A coin is tossed and a fair six-sided dice is rolled at the same time. What is the probability of tossing a head and rolling a 1 or 2 ?
ANS: These events are independent, so $\mathrm{P}(\mathrm{H}$ and 1 or 2$)=\mathrm{P}(\mathrm{H}) \cdot \mathrm{P}(1$ or 2$)=(1 / 2)(1 / 3)=1 / 6$.
b. Three green balls and one red ball are placed in a box. What is the probability of removing two green balls if each ball is replaced after it is removed?
ANS: These events are independent (because of the replacement), so $\mathrm{P}(\mathrm{GG})=\mathrm{P}(\mathrm{g}) \cdot \mathrm{P}(\mathrm{G})=(3 / 4)(3 / 4)=9 / 16$.
c. Three green balls and three red balls are placed in a box. What is the probability of removing a second green ball if the first ball chosen was green and was not replaced after it is chosen?
ANS: These events are NOT independent, so $\mathrm{P}(\mathrm{G})=2 / 5$.
d. A student randomly guesses at 10 multiple-choice questions. Find the probability that the student guesses exactly 3 correctly. Each question has four possible answers with only one correct answer and each question is independent of every other question.
ANS: This is a binomial situation, where $n=10, k=3, p=0.25$ (because there is a 1 in 4 chance of guessing an answer correctly). So, $\mathrm{P}(\mathrm{X}=3)=\operatorname{binompdf}(10,0.25,3)=0.2503$.
e. From the information given in 1d, what is the probability of guessing more than 8 questions correctly?

ANS: This is a binomial situation, where $n=10, k>8, p=0.25$. So, $\mathrm{P}(\mathrm{X}>8)=1-\mathrm{P}(\mathrm{X} \quad 8)=$ $1-\operatorname{binomcdf}(10,0.25,8)=0.00003$.
f. From the information given in 1 d , let X be the number of questions guessed correctly. What is the mean of X ? ANS: This is a binomial situation, where $n=10, k>8, p=0.25$. So, the mean $=n p=10(0.25)=2.5$.
2. (20 points). The mean of a random sample of 150 employees' salaries in some company is $\$ 18,500$ per year with a standard deviation of $\$ 2500$.
a. Find the 90% and 99% confidence intervals for the mean salary of all employees in the company. ANS: Using ZInterval on TI83: the 90% CI for the mean salary of all employees in the company is $\$ 18164$ to $\$ 18836$ and the 99% CI for the mean salary of all employees in the company is $\$ 17974$ to $\$ 19026$.
b. Explain what the 90% confidence interval means.

ANS: 90% of CI from all samples of size 150 contain the population mean.
c. Find the minimum sample size needed for a margin of error of $\pm \$ 300$ and an 95% confidence interval.

ANS: The ZSAMPLE program on TI83 returns $n=266.7$, so the minimum sample size needed is 267 .
3. (20 points). Here are measurements (in millimeters) of a critical dimension on a sample of automobile engine crankshafts:

224.120	224.001	224.017	223.982	223.989	223.961	223.960	224.089
223.987	223.967	223.902	223.980	224.089	224.057	223.913	223.999

The manufacturing process is known to vary normally with standard deviation of 0.060 mm . The process mean is supposed to be 224 mm . Do these data give evidence that the process mean is not equal to the target value of 224 mm ?
a. State H_{0} and H_{a}.

ANS: $H_{0}: \mu=224$
$H_{a}: \mu \quad 224$
b. Carry out a significance test with a á $=0.05$ significance level to justify your.

ANS: Using ZTest on the TI83, the p-value is 0.9568 .
c. State you conclusion.

ANS: Since the p-value > á, we fail to reject H_{0}. There is not enough information to accept H_{0} that the process mean is equal to the target value of 224 mm .
4. (20 points). A candy company sells milk and dark chocolates in 1-pound and 2-pound boxes. Here are the numbers of boxes sold one month:

SALES	Milk Chocolate	Dark Chocolate	Total
1 pound boxes	350	300	650
2 pound boxes	200	150	350
Total	550	450	1000

a. Find the probability that a box of chocolate sold is dark chocolate.

ANS: $\mathrm{P}(\mathrm{D})=450 / 1000=9 / 20$.
b. Find the probability that a box contains milk chocolates given it is a 2 -pound box.

ANS: $\mathrm{P}(\mathrm{M} \mid 2 \#)=200 / 350=4 / 7$.
c. Find the probability that a box is a 1-pound box given it contains dark chocolates.

ANS: $\mathrm{P}(1 \# \mid \mathrm{D})=300 / 450=2 / 3$.
d. Are the type of chocolates and the size of the boxes independent? Explain using the definition of independence.
ANS: The type of chocolates and the size of the boxes are independent only if $\mathrm{P}(\mathrm{M} \mid 2 \#)=\mathrm{P}(\mathrm{M})$. $P(M \mid 2 \#)=4 / 7$ (from b. above) and $P(M)=550 / 1000=11 / 20$. Since $P(M \mid 2 \#) \quad P(M)$, then the type of chocolates and the size of the boxes are NOT independent.
5. (10 points). A merchant claims that the average age of customers who purchase a certain brand of jeans is 15 . A sample of 35 customers had an average of 15.6 years with standard deviation of one year. Test the claim with an á $=0.05$ significance level.
ANS: $H_{0}: \mu=15$
$H_{a}: \mu \quad 15$
Using ZTest on the TI83, the p-value is 0.00039 . Since the p-value á, we reject H_{0}. That is, the average age of customers who purchase a certain brand of jeans is NOT 15.

Short Answers

6. (5 points). In a one-tailed statistical test of hypotheses, explain when we can reject H_{o}. ANS: We can reject H_{o} in a one-tailed statistical test if p-value á.
7. (5 points). Provide a setting in which a random variable has a binomial distribution. Explain why this is a binomial setting.
ANS: Many possible settings are possible.

Extra Credit

(3 points). Write the formula for the z-statistic.
ANS: The z-statistic is: $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$.

