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Chapter 0: Introduction

For centuries Euclid’s monumental work The Elements was regarded as a systematic dis-
cussion of absolute geometric truth. However, The Elements contains many assumptions.
Euclid states some of these assumptions as Postulates and Common Notions, while others,
such as the infinitude of a straight line, are merely implied in his proofs. We will see that
by eliminating one or more of these assumptions, we may derive geometries dramatically
different from the regular Euclidean geometry.

To arrive at these geometries, the primary assumption to disregard is that of the
historically controversial parallel postulate. Euclid’s parallel postulate, Postulate 5 of The
Elements, states:

“That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than two right
angles.”[6]

This postulate garnered much criticism from early geometers, not because its truth was
doubted - on the contrary, it was universally agreed to be a logical necessity - but because
its complexity left them uneasy about it being a postulate at all, and not a proposition.
There were several attempts to prove the parallel postulate, but they often assumed some-
thing that turned out to be its equivalent. The result was the discovery of a host of
equivalent statements to the parallel postulate. Some of these include:

• If a line intersects one of two parallels, it must intersect the other also (Proclus’
axiom).

• Parallel lines are everywhere equidistant.

• Through a point not on a given line there exists a unique line parallel to the given
line (Playfair’s theorem).

• The sum of the angles of a triangle is two right angles.

• If two parallels are cut by a transversal, the alternate interior angles are equal.

• Similar triangles exist which are not congruent.
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By taking all other Euclid’s assumptions, and substituting one of the above for the
parallel postulate, we arrive at the usual Euclidean geometry.

In the early 18th century, an attempt was made by the Italian mathematician Girolamo
Saccheri to prove the parallel postulate without the use of any additional assumptions.
In the process, he derived some of the first results in what would be called elliptic and
hyperbolic geometry. Saccheri considered a quadrilateral ABCD in which the sides AD
and BC are equal in length and perpendicular to the base AB (see Figure 0-1.)

Figure 0-1

He proved correctly that in such a quadrilateral the summit angles ∠ADC and ∠BCD
are equal. Proposition 291 of The Elements may be invoked to prove that the summit an-
gles are right angles, but because Proposition 29 is dependent upon the parallel postulate,
Saccheri could not make this claim. Instead, he assumed by way of contradiction (or so
he hoped) that the summit angles were either larger or smaller than right angles.

By assuming that the summit angles were larger than right angles, he arrived at the
following results:

(i) AB > CD.

(ii) The sum of the angles of a triangle is greater than two right angles.

(iii) An angle inscribes in a semicircle is always obtuse.

Figure 0-2

1See the Appendix for a list of Euclid’s propositions, postulates, and other assumptions from Book 1
of The Elements.
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Figure 0-2 shows such a quadrilateral. In this case, Saccheri was able to derive contra-
dictions to Euclid’s propositions 16, 17, and 18, however these propositions use Euclid’s
unstated assumption that lines are infinite in extent. Later, the three properties above
would be shown to hold true in elliptic geometry, in which lines are never infinite.

If the summit angles were smaller than right angles, Saccheri derived the following
results:

(i) AB < CD (see Figure 0-3).

Figure 0-3

(ii) The sum of the angles of a triangle is less than two right angles.

(iii) An angle inscribes in a semicircle is always acute.

(iv) If two lines are cut by a transversal so that the sum of the interior angles on the
same side of the transversal is less than two right angles, the lines do not necessarily
meet, that is, they are sometimes parallel.

(v) Through any point on a given line, there passes more than one parallel to the line.

(vi) Two parallel lines need not have a common perpendicular.

(vii) Parallel lines are not equidistant. When they have a common perpendicular they
recede from each other on each side of the perpendicular. When they have no com-
mon perpendicular, they recede from each other in one direction and are asymptotic
in the other direction.

In this final property, Saccheri believed he had found a contradiction, namely that lines
l and m intersect at some infinitely distant point and therefore had proved the parallel
postulate. However, this was not a contradiction at all: the idea of “limit” was yet to be
formalized in mathematics, and his eight properties above would become the initial results
of what was later termed hyperbolic geometry. Yet the two new geometries stumbled upon
by Saccheri would not be actively acknowledged and researched until the early nineteenth
century.
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The credit for first recognizing non-Euclidean geometry for what it was generally goes
to Carl Frederich Gauss (1777-1855), though Gauss did not publish anything formally
on the matter. Gauss, as many others, began by desiring to firmly establish Euclidean
geometry free from all ambiguities. His objective was to prove that the angle measures of a
triangle must sum to 180◦ (recall, this is equivalent to the parallel postulate). He supposed
the contrary, and so was left with two possibilities: either the angle sum is greater than
180◦, or the angle sum is less than 180◦.

Using, as Saccheri had done, Euclid’s assumption that lines are infinite in length, Gauss
arrived at a contradiction in the case where the angle measures of a triangle sum to more
than 180◦. However, the case where the angle sum is less than 180◦ did not lend itself to
such a contradiction. In a private letter written in 1824, Gauss asserted:

“The assumption that the sum of the three angles is less that 180◦ leads to a
curios geometry, quite different from ours, but thoroughly consistent, which I
have developed to my entire satisfaction.”[2]

While Gauss may have developed this geometry to his own satisfaction, for whatever
reason, he did not see fit to publish any of his results. Instead, this credit goes to two
mathematicians in different parts of the world who, unbeknownst to each other, arrived
at the same conclusion around the same time: that unless the parallel postulated were
someday proven, the geometry in which the angle sum of a triangle is less that 180◦ is
entirely valid.

In 1829 a Russian mathematics professor named Nikolai Lobachevsky from the Uni-
versity of Kasan published “On the Principles of Geometry” in the Kasan Bulletin. In
this article, he described a geometry in which more than one parallel to a given line may
be drawn through a point not on the line. He found that this was tantamount to the angle
sum of a triangle being less than 180◦. This was the first publication on non-Euclidean
geometry, and so Lobachevsky is recognized as the first to clearly state its properties.
However, his work was not widely regarded by the mathematical community at the time,
and he died in 1856 before his work received wide acceptance. Today, Hyperbolic geometry
is sometimes called Lobachevskian geometry.

The same year that Nikolai Lobachevsky published his work on non-Euclidean geome-
try, a Hungarian officer in the Austrian army named Johann Bolyai submitted a manuscript
to his father, Wolfgang Bolyai, a math teacher with ties to Gauss. The manuscript con-
tained the younger Bolyai’s discovery of non-Euclidean geometry with many of its surpris-
ing results. “Out of nothing, I have created a strange new universe,” Bolyai is credited
with stating in a letter to his father. His work was published in 1832 as an appendix
entitled “The Science of Absolute Space” to his father’s book on elementary mathematics.
It was in a letter to the elder Bolyai after reading this appendix that Gauss confessed
to having come to the same conclusions thirty to thirty-five years prior. Today, Gauss,
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Lobachevsky, and Bolyai are given some share of credit for discovering the non-Euclidean
geometry now called hyperbolic geometry.

While Gauss, Lobachevsky, and Bolyai all focused their attention on the geometry
formed by assuming the angle sum of a triangle is less than 180◦, a mathematician named
Georg Friedrich Bernhard Riemann (1826-1866) discovered that by disregarding the as-
sumption that lines have infinite length, one arrives at a valid geometry in which the angle
sum of a triangle is greater than 180◦. Euclid’s second postulate states that a straight line
may be continued in a straight line. However, one might imagine a line as being somewhat
like a circle, “continuing” forever yet by no means infinite. Riemann considered this the
distinction between “unboundedness and infinite extent.”

Having decided that lines could after all be finite, Riemann took to studying geometry
free of the parallel postulate. He found that this eliminated any contradiction in the case
where the angles of a triangle sum to more than 180◦. Interestingly, he found that in
such a geometry parallel lines do not exist. This new non-Euclidean geometry came to be
known as elliptic geometry, or sometimes, Riemannian geometry.

Thus, by the mid-nineteenth century there were two competitors with the geometry of
Euclid. Unless the parallel postulate could be proven, both hyperbolic and elliptic geom-
etry seemed logically consistent. But it was not until 1868 that an Italian mathematician
named Eugenio Beltrami (1835-1900) proved beyond a doubt that these new geometries
were every bit as valid as Euclid’s own. He showed through clever analysis that if a contra-
diction existed in either hyperbolic or elliptic geometry, then a contradiction also existed
in Euclidean geometry. Therefore, the mathematical community had to accept these new
geometries as valid alternatives, and the quest to prove the parallel postulate finally came
to an end.

While elliptic and hyperbolic geometry share most of the spotlight for non-Euclidean
geometry, there do exist other geometries which are non-Euclidean. A fairly recent develop-
ment is Taxicab geometry, the beginnings of which were formulated by the mathematician
Hermann Minkowski (1864-1909). Taxicab geometry is formed by taking the regular ge-
ometry in the Euclidean coordinate plane and redefining the way distance between points
is calculated. This means that the assumption that lines of the same length are congruent
must be discarded, and with the loss of that assumption goes many of Euclid’s most well-
known results. Congruence conditions for triangles, for example, do not apply in Taxicab
geometry. Research continues to see what other geometries might be formed by defining
distance in still different ways.

Today, non-Euclidean geometries are commonly used in mathematics. There are even
applications to these geometries outside of pure mathematics. Hyperbolic geometry, for
example, is invoked by physicists studying Eistein’s General Theory of Relativity to de-
scribe the shape of our universe. Spherical geometry, a simple form of Elliptic geometry,
is used in navigational calculations for movement on the earth, and taxicab geometry pro-
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vides a good model of urban geography. While Euclidean geometry still most accurately
represents our universe locally, scientists continue to discover surprising new applications
for non-Euclidean geometries. As Poincare once asserted: “One geometry cannot be more
true than another; it can only be more convenient.”
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Chapter 1: Hyperbolic Geometry

We begin our discussion of hyperbolic geometry with the quadrilateral construction done
by Girolamo Saccheri in the 18th century. Our goal will be to construct a new geometry
in which Euclid’s parallel postulate does not hold and in which the angle sum of a triangle
is less than 180◦. We allow ourselves the use of Euclid’s first four postulates and all his
assumptions not equivalent to the parallel postulate. (This includes the assumption that
lines are infinite.) Since the first 28 postulates of The Elements do not require the parallel
postulate, these results will be valid in our geometry. Any time a proposition is invoked
in our discussion, it will be stated explicitly, and can be referenced in the Appendix.

Now, recall from the introduction the quadrilateral ABCD considered by Saccheri in
his attempt to prove the parallel postulate:

Figure 1-1

We call AB the lower base, CD the upper base, AD and BC the arms (which have
equal length) and angle ∠C and ∠D the upper base angles. Note that ∠A and ∠B are
right angles. This is called the Saccheri quadrilateral.

Theorem 1-1. The upper base angles of the Saccheri quadrilateral are equal.

Proof. By the side-angle-side (SAS) congruency condition, triangles ∆ABC and ∆BAD
are congruent.

Figure 1-2
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Thus, AC ∼= BD. Then 4ADC and 4BCD are congruent by the side-side-side (SSS)
congruency condition. Therefore, ∠D ∼= ∠C.

Propositions 4 and 8 of The Elements give the SAS and SSS congruency conditions.
Thus, the above theorem is also valid in Euclidean geometry, since its proof does not
require the parallel postulate.

Proposition 27 states that if two lines share a perpendicular, they are parallel. We are
thus able to prove the following:

Theorem 1-2. The line joining the midpoints of the upper and lower bases of the Saccheri
quadrilateral (called the altitude) is perpendicular to both. Therefore, the upper base and
lower base lie on parallel lines sharing a common perpendicular.

Figure 1-3

Proof. Let E and F be the midpoints of the lower base and upper base respectively. Then
let angles α, α′, β, β′, γ, γ′, µ and µ′ be as in Figure 1-3. Note 4DEA ∼= 4CEB by SAS.
Thus DE ∼= CE, α = α′, and β = β′. Invoking SSS, it follows that 4DEF ∼= 4CEF .
Hence γ = γ′, and since these angles are supplementary, each must be 90◦. Also, µ = µ′,
and so α + µ = α′ + µ = 90◦, again since these angles are supplementary. Thus EF ⊥
AB and EF ⊥ CD, and it follows from Proposition 27 that

←→
AB ‖ ←→CD with common

perpendicular
←→
EF .

In hyperbolic geometry the angle sum of a triangle is always less than 180◦. Without
any additional postulates, we are now able to prove that the angle sum does not exceed
180◦. Later we will require the Hyperbolic Parallel Postulate to show that the angle sum
is strictly less than 180◦.

The proof of the following theorem uses the fact that a triangle cannot have two angles
summing to more than two right angles. This is given in Proposition 17 of The Elements.

Theorem 1-3. The angle sum of a triangle does not exceed 180◦.
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Proof. By way of contradiction, suppose that there exists a triangle 4ABC whose angle-
sum is 180◦ + α, for some α > 0. Let D1 be the midpoint of BC. Construct line segment
AD1E1 so that AD1

∼= D1E1. (Observe that we have invoked the assumption that lines
may be extended indefinitely.)

Figure 1-4

Proposition 15 of The Elements gives us that vertical angles are congruent, so we
have ∠AD1C ∼= ∠E1D1B. Thus 4AD1C ∼= 4E1D1B by SAS. Now notice that the
angle sum of 4ABC is the same as the angle sum of 4ABE1. Next, notice that ∠A =
∠CAD1 + ∠E1AB, so either ∠CAD1 ≤ 1

2∠A or ∠E1AB ≤ 1
2∠A. Suppose (without loss

of generality) that ∠E1AB ≤ 1
2∠A. Then 4ABE1 is a triangle with the same angle sum

as 4ABC, and has the angle ∠E1AB ≤ 1
2∠A.

Now, repeat the above construction on 4ABE1 and come up with a triangle whose
angle sum is equal to that of 4ABC, and that has an angle less than or equal to 1

4∠A.

Figure 1-5

Figure 1-5 shows the construction of 4ABE2 with the same angle sum as 4ABC and
with ∠E2AB ≤ ∠A = 1

4∠A = 1
22 ∠A. (Note that we have chosen without loss of generality

that ∠E2AB be less than or equal to 1
22 ∠A. Had in fact ∠E1AD2 been less than or equal

to 1
22 ∠A, the desired triangle would have been 4AE2E1.)
Continuing this construction, we eventually arrive at a triangle 4ABEn such that

4ABEn has the same angle sum as 4ABC and contains the angle ∠EnAB ≤ 1
2n ∠A. If

we let n be such that 1
2n ∠A < α, we have that ∠EnAB ≤ 1

2n ∠A < α. Then since the
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angle sum of 4ABEn equals the angle sum of 4ABC = 180◦ + α, we get that

180◦ + α = ∠EnAB + ∠ABEn + ∠BEnA < α + ∠ABEn + ∠BEnA,

and so
180◦ < ∠ABEn + ∠BEnA,

or that the sum of the above angles is greater than two right angles. Thus 4EnAB is
a triangle with two angles summing to more than two right angles, which contradicts
Proposition 17 of The Elements.

Notice that Theorem 1-3 implies that the upper base angles of the Saccheri quadrilat-
eral are not obtuse (why?).

Theorem 1-4. Consider a quadrilateral with a lower base that makes right angles with
its two arms.

(i) If the upper base angles are unequal, so are the arms.

(ii) If the arms are unequal, so are the upper base angles, with the greater upper base
angle opposite the greater arm.

Figure 1-6

Proof. In order to prove (i) we only need to note that it is the contrapositive of Theorem 1-
1.

For (ii), suppose that BC > AD in quadrilateral ABCD. Let E be the point on
the segment BC such that AD ∼= BE. Then ABED is a Saccheri quadrilateral, so
∠ADE ∼= ∠BED by Theorem 1-1. Note that ∠ADC = ∠ADE +∠EDC. Proposition 16
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gives us the Exterior Angle Theorem, namely that, in a triangle, an exterior angle is greater
than either of the interior and opposite angles. So we have ∠BED = ∠ADE > ∠ECD,
and therefore ∠ECD < ∠ADE + ∠EDC = ∠ADC.

Theorems 1-1 through 1-4 belong to neutral geometry, because they make no assump-
tions about parallel lines. This means that they hold in both Euclidean and hyperbolic
geometry. In order to examine some results that hold in hyperbolic geometry but not
Euclidean geometry we must first state a replacement for the Parallel Postulate.

Axiom 1-1 (Hyperbolic Parallel Postulate). The upper base angles of the Saccheri quadri-
lateral are acute.

Recall that given our assumptions, the upper base angles of the Saccheri quadrilateral
are not obtuse. Two possibilities remain: either the angles are right angle, or that they
are acute. The Parallel Postulate is equivalent to the angles being right angles. Therefore,
the Hyperbolic Parallel Postulate is the negation of the Parallel Postulate. As such,
the negation of anything equivalent to the Parallel Postulate will belong to hyperbolic
geometry. This gives us, for example, the following:

(i) There exist parallel lines which are not equidistant from one another.

(ii) There exists a line and a point not on the line through which run more than one
parallel to the line.

(iii) Similar triangles are always congruent.

Now we will examine some results unique to hyperbolic geometry. Our figures from
now on will be drawn in such a way as to approximate the behavior of hyperbolic lines.

Theorem 1-5. In the Saccheri quadrilateral:

(i) the altitude is shorter than the arms, and

(ii) the upper base base is longer than the lower base.

Figure 1-7
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Proof. On the Saccherri quadrilateral ABCD, let E and F be the midpoints of the lower
base and upper base respectively. Theorem 1-2 gives us that EF is perpendicular to both
the upper and lower base. By the Hyperbolic Parallel Postulate, ∠C and ∠D are acute.
Then, by Theorem 1-4, AD > EF in AEFD and CB > EF in EBCF .

To prove (ii), consider EFDA as having lower base EF and arms AE and DF . Theo-
rem 1-4 gives us that DF > AE and similarly FC > EB. Therefore DF +FC > AE+EB
or DC > AB. Thus the upper base is longer than the lower base.

Let us consider the Saccheri quadrilateral from the previous construction (see Figure 1-
8).

Figure 1-8

In Theorem 1-2 we proved that lines
←→
DC and

←→
AB are parallel with common perpen-

dicular
←→
EF . Theorem 1-5 gave us that AD > EF and BC > EF . Thus the parallel lines←→

DC and
←→
AB are not equidistant.

Definition 1.1. A Lambert1 quadrilateral is a quadrilateral with three right angles.

Theorem 1-6. In hyperbolic geometry, the fourth angle of a Lambert quadrilateral is
acute, and each side adjacent to the acute angle is longer than the opposite side.

The proof is left as an exercise for the reader in the problem set.
In Euclidean geometry two parallel lines always have a common perpendicular. They

have, in fact, infinitely many common perpendiculars. In hyperbolic geometry, however
parallel lines either have no common perpendiculars or a unique one.

Theorem 1-7 (Uniqueness of a common perpendicular to parallel lines). If two parallel
lines have a common perpendicular, then they cannot have a second common perpendicular.

Proof. Let ` and m be parallel lines with two common perpendiculars p1 and p2.
1Named after Johann Lambert(1728-1777), who used its construction in an attempt to prove the Parallel

Postulate, much like Saccheri had done.
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Figure 1-9

Then `, m, p1, and p2 define a Lambert quadrilateral with four right angles, which
contradicts Theorem 1-6.

The following three theorems give us an idea of what certain parallel lines “look” like
in hyperbolic geometry. They will also be useful in proving that the angle sum of a triangle
is always less that 180◦.

Theorem 1-8. Given two lines, if there exists a transversal which cuts the lines so as
to form equal alternate interior angles or equal corresponding angles, then the lines are
parallel with a common perpendicular.

Proof. Let ` and m be two lines cut by a transversal
←→
AB, where A is a point on m and B

is a point on `, so that
←→
AB makes equal alternate interior angles with respect to ` and m.

It is enough to prove the case when
←→
AB makes equal alternate interior angles, because it

is equivalent to the case when
←→
AB makes equal corresponding angles (why?). Proposition

27 of The Elements tells us that `‖m. Let P be the midpoint of AB. Construct the line
perpendicular to ` which passes through P . Let C be the point of intersection of this new
line with `, so that

←→
CP ⊥ `. Construct the line perpendicular to m through point P .

Let D be the point of intersection of m with this line, so
←→
DP ⊥ m. We will show that←→

CP =
←→
DP , which, based on Proposition 14, is true if the sum ∠CPB and ∠BPD equals

180◦. Now, ∠APD and ∠DPB are supplementary, so they sum to two right angles by
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Figure 1-10

Proposition 13. So, if we show that ∠BPC ∼= ∠APD, we will also have that ∠CPB and
∠BPD sum to 180◦. By hypothesis we have ∠CBP ∼= ∠DAP . By construction, we know
∠BCP and ∠ADP are both right angles. Finally, since P is the midpoint of AB, we have
AP ∼= PB. Thus, by Proposition 26 (AAS), 4BCP ∼= 4ADP , and so ∠APD ∼= ∠BPC.
Hence,

←→
CP =

←→
DP =

←→
CD, where

←→
CD ⊥ ` and

←→
CD ⊥ m. That is, ` is parallel to m with

common perpendicular
←→
CD.

Corollary 1-1. If two lines are perpendicular to the same line, then they are parallel. (We
see that this intuitive property of Euclidean geometry also holds in hyperbolic geometry.)

We already mentioned that Euclid often relied on unstated assumptions to prove his
propositions in The Elements. One such assumption was the infinite extent of a straight
line. Another was what is now called the Plane-Separation Axiom. This axiom states that
any straight line in a plane splits the plane into two disjoint (nonempty) sets, and if any
two points lie in separate halves of the split plane, they determine a line which intersects
the original straight line. This ensures that if a line has two points on different sides of
another line, the lines intersect somewhere. The Plane-Separation Axiom is required for
a proof of the following Theorem. It is left as an exercise in the problem set.

Theorem 1-9. If two lines have a common perpendicular, there exist transversals, other
than the perpendicular, which cut the lines so as to form equal alternate interior angles (or
equal corresponding angles). Moreover, the only transversals with this property are those
which go through the point on that perpendicular which is midway between the lines.

Theorem 1-10. The distance between two parallels with common perpendicular is least
when measured along that perpendicular. The distance from a point on either parallel to
the other increases as the point recedes from the perpendicular in either direction.
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Proof. Let ` and m be parallel lines with common perpendicular
←→
AB, which intersects m

at A and ` at B. Let C be any point on ` other than B and construct a perpendicular to
m through C. Let D be the point of intersection of the perpendicular with m (D is called
the projection of C on m).

Figure 1-11

Then ABCD is a Lambert quadrilateral, so ∠BCD is acute and CD > BA by Theo-
rem 1-6. Therefore the distance is least when measured along the common perpendicular
than when measure along any other perpendicular.

Now choose a point E on ` so that C is between E and B. As before, construct
the perpendicular to m through point E. Call the intersection with m point F . Since
∠BCD is acute, ∠DCE is obtuse. Also, AFEB is a Lambert quadrilateral, so ∠CEF
is acute. Thus ∠DCE > ∠CEF . By Theorem 1-4 this means that EF > DC, and it
follows that the distance between the lines is increasing as we recede from the common
perpendicular.

Playfairs’s Theorem is often used by geometers as an equivalent to the Parallel Postu-
late. It states that given a line and a point not on the line there exists a unique parallel
to the line through the point. The following theorem is a blatant contradiction of this
statement.

Theorem 1-11. Given a line and a point not on the line there exist infinitely many
parallels to the line through the point.

Proof. Let ` be a line and L a point not on `. Let M be the projection of L on `.
So

←→
LM ⊥ `. Let k be the line through L perpendicular to

←→
LM (Proposition 11 of The

Elements). Then k is a line parallel to ` with common perpendicular
←→
LM .
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Let L′ be any point on k (WLOG) to the right on L. Let M ′ be the projection of L′

on `. By Theorem 1-10, we know L′M ′ > LM , so let P ′ be the point on L′M ′ such that
P ′M ′ ∼= LM .

Figure 1-12

Then MM ′P ′L is a Saccheri quadrilateral, so by Theorem 1-2 we know that the upper
base LP ′ is on a line parallel to the lower base MM ′ with a common perpendicular.
(Where is this common perpendicular?) Thus we have also

←→
LP ′‖`.

Now k and
←→
LP ′ are two lines through L parallel to `. The line

←→
LP ′ was determined by

our choice of L′ to the right of L on k. Since L′ was an arbitrary point, we want to conclude
that if we choose a different point on k, say L′′, that this will give us another parallel to `

through L different from k and
←→
LP ′. This would imply that there exist an infinite number

of lines parallel to ` through L. We leave the rest of the proof as a homework problem.

So far we have discussed only parallel lines that have a common perpendicular. Two
lines that are parallel with common perpendicular are said to be hyper-parallel. There are
parallel lines in hyperbolic geometry, however, that are not hyper-parallel, that is, they
do not have a common perpendicular. Such parallels are asymptotic in one direction and
are called limiting parallel lines, or horoparallels. It can be proved that for any line ` and
any point P not on `, there are exactly two lines through P horoparallel to `. Figure 1-13
shows the lines h1 and h2 horoparallel to a line ` through a point P .
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Figure 1-13

It is a famous result of hyperbolic geometry that the angle sum of a triangle is always
less than 180◦. We now offer a proof of this, and then state some other interesting theorems
regarding hyperbolic triangles.

Theorem 1-12. The angle sum of a triangle is always less than 180◦.

Proof. We show first that the theorem holds for right triangles and then prove the general
case.

Let 4ABC be a right triangle with right angle at A. Let
←→
CD be the line through C

such that ∠ABC ∼= ∠BCD (Proposition 23 of The Elements gives us this construction).

Figure 1-14

So
←→
BC is a transversal making equal alternate interior angles with respect to

←→
CD and←→

AB. Then by Theorem 1-8,
←→
CD‖←→AB with common perpendicular. Let this perpendicular

be denoted by
←→
EF where E is the intersection of the perpendicular with

←→
AB and F is

the intersection of the perpendicular with
←→
CD. Let G be the midpoint of EF . Then by

Theorem 1-9,
←→
CB passes through G, and thus we may conclude CG ∼= GB (why?). Notice

that AEFC is a Lambert quadrilateral, so ∠ACF must be acute. Therefore ∠ACF =
∠ACB + ∠BCF ∼= ∠CBA + ∠BCF < 90◦. It follows that the angle sum of 4ABC is
less than 180◦, that is, in any right triangle the angle sum is always less than 180◦.

Now consider any non-right triangle 4PQR.
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Figure 1-15

Since by Theorem 1-3, the angle sum of a triangle is at most 180◦, 4PQR can have
at most one obtuse angle, that is, it must have at least two acute angles, say at P and
Q. Let S be the projection of R onto

←→
PQ. Then S lies between P and Q (why?), so RS

divides 4PQR into two right triangles. Each right triangle has angle sum less than 180◦,
and ∠PSR + ∠QSR form a straight line, so the angle sum of 4PQR is the sum of the
angle sums of 4PSR and 4SQR minus 180◦. It follows that the angle sum of 4PQR is
less than 360◦ − 180◦ = 180◦.

Theorem 1-13 (AAA). If two triangles have the three angles of one congruent to the
three angles of the other respectively, then the triangles are congruent.

Figure 1-16

Proof. Let 4ABC and 4PQR be triangles such that ∠A ∼= ∠P , ∠B ∼= ∠Q, and ∠C ∼=
∠R. By way of contradiction, suppose that the triangles are not congruent. Then there is
a side of one triangle that is longer than the corresponding side in the other triangle, so
suppose (WLOG) that PR > AC. Let S be on PR such that SR ∼= AC, and construct
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∠RST ∼= ∠P (Proposition 23). Then by ASA, 4STR∼= 4PQR. The rest of the proof is
left as an exercise in the problem set.

Corollary 1-2. Not all triangles have the same angle sum.

While we already proved that the angle sum of a triangle is always less than 180◦, we
now know that this angle sum can vary. In fact, for any positive real number x < 180◦,
there exists a hyperbolic triangle with angle sum x.

In hyperbolic geometry, we define the defect of a triangle to be the amount by which its
angle sum differs from 180◦. The larger triangles are in the hyperbolic plane, the greater
their defect, and conversely, the smaller triangles are in the hyperbolic plane, the smaller
their defect. This means large triangles have angle sums near 0◦ and small triangles have
angle sums near 180◦. This demonstrates the property of hyperbolic geometry that very
small portions of the hyperbolic plane behave almost like the Euclidean plane.

We now look at some ways to model the hyperbolic plane.

Models of Hyperbolic Geometry

Henry Poincare (1854-1912) is credited in name with two models of hyperbolic geometry:
the Poincare half-plane and the Poincare disk models of hyperbolic geometry. We will
briefly discuss the two models, with the disclaimer that a thorough understanding of them
requires a more rigorous study than is presented here. The Poincare half-plane model is
the upper half-plane of the Euclidean plane (all points (x, y) such that y > 0) together with
a hyperbolic metric, which is a formula for measuring distance in hyperbolic geometry.
Lines in this model are represented by the arcs of circles in the upper half-plane whose
center lies on the x-axis, and by straight Euclidean lines which are perpendicular to the
x-axis. One might think of these straight Euclidean lines as being arcs of circles of infinite
radii. Arcs in the upper-half plane that intersect on the x-axis represent horoparallel
lines; arcs which do not intersect in the upper-half plane represent hyper-parallel lines,
and arcs which intersect at right angles represent perpendicular lines. The angle between
two intersecting arcs is determined by the measure of the angle between the tangent rays
to the arcs. Figure 1-17 shows some lines in the Poincare half-plane. In Figure 1-17,
observe that lines ` and k are horoparallel, lines n and k are hyper-parallel with common
perpendicular p, and lines l, m, and q determine a hyperbolic triangle.

Now suppose one could pick-up the “ends” of the x-axis which lie at infinity and glue
them together at a point. The result is something like a disk. What happens to our
hyperbolic lines in the half-plane when we mold the half-plane into a disk? The lines per-
pendicular to the x-axis become diameters of the disk, and the arcs of circles with centers
on the x-axis become arcs of circles that intersect the disk’s boundary perpendicularly.
This is basically the Poincare disk model.
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Figure 1-17

The Poincare hyperbolic disk is defined to be the interior of the disk of radius 1 about
the origin, together with the hyperbolic metric. A hyperbolic point is thus a point inside
the disk. A hyperbolic line is represented by an arc of a circle whose endpoints intersect the
boundary of the disk at right angles. Diameters of the disk are also considered hyperbolic
lines in this model (again, one might think of them as arcs of a circle of infinite radius).
The reader should think of the boundary of the disk as representing infinity. Arcs that
intersect on the boundary of the disk represent horoparallel lines which are asymptotic
and “meet” at infinity. Arcs that do not intersect on the interior of the disk or on the
boundary represent hyper-parallel lines. Arcs that intersect at right angles in the interior
of the disc represent perpendicular lines. As before, the angle between two intersecting
arcs is determined by the measure of the angle between the tangent rays to the arcs.

Figure 1-18

Examine Figure 1-18, which represents the Poincare disk, and locate a pair of horopar-
allel lines, a pair of hyper-parallel lines, a pair of perpendicular lines, and a hyperbolic
triangle.

An interesting construction problem is how one might construct a line in the Poincare
disk through two points. If the points lie on a diameter, the construction is obvious.
If the points do not determine a diameter of the disk, however, how might one do this
construction? This is explored in the problem set.
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Problem Set 1

1. List the axioms and assumptions we used in our development of hyperbolic geometry.
You may reference the appendix.

2. Find the flaw in the proof of the following claim:

Claim: There is a triangle in hyperbolic geometry whose angle sum is 180◦.

Proof: Let ` be a line, and let m be a parallel to ` through point P not on `. Let
Q and R be distinct points on `. Then lines

←→
QP and

←→
RP are transversals that cut

the parallel lines ` and m.

Then as in the figure, ∠1 = ∠2 and ∠3 = ∠4. Thus, the angle sum of 4QRP is
given by ∠2 + ∠5 + ∠4 = ∠1 + ∠5 + ∠3 = 180◦.

3. Complete the following sentences:

a. The angle sum of a quadrilateral in neutral geometry is 360◦.

b. The angle sum of a quadrilateral in hyperbolic geometry is 360◦.

c. Write a proof for your statement in part b.

4. Write a proof for Theorem 1-6.

5. In hyperbolic geometry, why can there be no squares or rectangles?

6. Show that in hyperbolic geometry there exist rhombi with equal angles. Do rhombi
with equal angles exist in Euclidean geometry other than the square?

7. Proof of Theorem 1-9: Let ` and m be lines with a common perpendicular
←→
AB for

A on ` and B on m. Theorem 1-8 tells us that `‖m.

a. Show that there exists a transversal cutting ` and m that makes equal alternate
interior angles and equal corresponding angles. Hint: If P is the midpoint of
AB construct a transversal through P .
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b. Where, if anywhere, did you use the Plane-Separation Axiom in part a.?
c. Show that if there exists a transversal of ` and m which makes equal alternate

interior angles, and which does not intersect AB at the point midway between
` and m, them one can construct a second common perpendicular to ` and m.
Hint: You may need to consider two cases.

8. Completing the proof of Theorem 1-11. Using the construction from the proof of
Theorem 1-11 as depicted in figure below, choose a point L′′ to the right of L′ on
k. Let M ′′ and P ′′ be constructed in the same way as M ′ and P ′ in the proof of
Theorem 1-11.

Show that the lines
←→
LP ′ and

←−→
LP ′′ are not the same. Explain why this means there

are infinitely many lines parallel to a given line through a point not on it.

9. Prove that an angle inscribed in a semicircle in hyperbolic geometry is always acute.

10. Exhibit a pair of parallel lines and a transversal so that on one side of the transversal,
the sum of the interior angles is less than 180◦.

11. Show that no two hyperbolic lines are equidistant. Hint: Show that the distance
from one line to another cannot be the same at more than two points. Recall that
distance from a point to a line is given by the line segment perpendicular to the line
through the point.

12. Consider triangle a 4ABC and let D be a point between A and B. Extend AB
slightly to create exterior angle ∠EAC.

Describe what happens to angles ∠EDC and ∠ACD as D approaches A along
segment AB. What happens to the angle sum of 4ADC? How might you use this
construction to demonstrate a triangle with angle measure arbitrarily close to 180◦?
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13. Finish the proof of Theorem 1-13. Hint: Use what you proved in problem 2 along
with what you know about the angle sum of a hyperbolic triangle.

14. Recall that the definition of the defect of a hyperbolic triangle is the amount by which
the angle sum of the triangle differs from 180◦, what do you think is the definition of
the defect of an n-sided polygon? Give an upper bound for the defect of an n-sided
hyperbolic polygon.

15. It can be shown that the area of a hyperbolic triangle Td with defect d is given by
the formula A(Td) = k · d for some constant k which relates the units of length to
the units of area. This means that the area of a triangle is determined by its defect.

a. Give an upper-bound for the area of a triangle in hyperbolic geometry. This
means that no matter how “big” we make our triangles, the area is always
less than this upper-bound. Thus, unlike in Euclidean geometry, we cannot
construct triangles of arbitrarily large area.

b. Give a formula for the area of an n-sided hyperbolic polygon.

c. Is there an upper-bound for the area of an n-sided hyperbolic polygon?

d. Can we construct hyperbolic polygons of arbitrarily large area?

16. Let AB be a hyperbolic line and P a point not on it. Let
←−→
PM be a line horoparallel

to AB as in the figure below. Let CP be the segment perpendicular to AB through
P , and let D be any point on AB between C and B. What happens to ∠CPD as
D moves to the right along AB? What angle does it approach? This angle is called
the angle of parallelism for segment CP .
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17. On your own paper, draw in the Poincare half-plane:

a. A pair of hyper-parallel lines.

b. The common perpendicular of your hyper-parallel lines.

c. A pair of horoparallel lines.

d. A hyperbolic triangle.

e. A Saccheri quadrilateral.

18. To construct a line through two points in the Poincare disk. Using a compass and
ruler:

a. Draw a circle and label the center O.

b. Pick two points inside the circle that do not lie on a diameter. Label them P

and Q. Draw the Euclidean line
←→
OP .

c. Draw the Euclidean line perpendicular to OP through point P . Label the
points of intersection of this perpendicular with the circle S and T .

d. Draw the tangent lines to the circle at points S and T . These tangents intersect
at a point. Label the point P ′.

e. Draw the circle through the points Q, P , and P ′.

f. At what angle does the circle you just constructed intersect the boundary of
your original circle?

19. Now choose a point X in the Poincare disk other than your P and Q from problem
16. Using a compass and ruler, accurately draw the two lines through X horoparallel
to the hyperbolic line

←→
PQ in problem 16. Hint: To construct a horoparallel, use the
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same construction as in problem 16 to draw the hyperbolic line through X and Y ,
where Y is an appropriately chosen point.

20. Can you draw any other lines in the Poincare disk, besides those you drew in problem
16 which, are horoparallel to

←→
PQ through X?
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Chapter 2: Elliptic Geometry

Hyperbolic geometry was the result of Saccheri investigating the hypothesis of the acute
angle. Now we look at the results garnered from the hypothesis of the obtuse angle. From
the introduction we know that Saccheri discovered that the hypothesis of the obtuse angle
implied that the upper base is shorter than the lower base in the Saccheri quadrilateral,
and that the angles of a triangle sum to more than 180◦. We also mentioned that Saccheri
reached a contradiction in this case by assuming that lines have infinite length, so we know
that lines in elliptic geometry (for that is what this geometry came to be known as) have
finite length. These lines must then turn inward on themselves, much like circles, in order
to preserve the truth of Euclid’s second postulate. We further assume that all lines have
the same finite length. Since lines behave like finite circles, the notion of betweenness of
points on a line no longer holds. Euclid’s third postulate claims the existence of arbitrarily
large circles, but since our lines are now finite in length, we may describe circles only with
limited radius (less than or equal to half the length of a line), so we should modify this
postulate appropriately. Furthermore, we are allowed the use of the first 15 of Euclid’s
propositions along with select other propositions such as the ASA congruence condition
for triangles (Proposition 26) and the ability to construct an angle at a point which is
congruent to a given angle (Proposition 23), as they do not depend on any of the changes
we have made to his original assumptions. To all of this, we add one more axiom for use
in later Theorems:

Axiom 2-1 (Pasch’s Axiom). If a line intersects a side of a triangle, and does not intersect
any of the vertices, it also intersects another side of the triangle.

Pasch’s Axiom, named for the German mathematician Moritz Pasch (1843-1930), can
be derived from the Axiom of Separation mentioned in the chapter on hyperbolic geometry.
In Elliptic geometry, however, the Axiom of Separation may not hold. We will discuss this
further when we look at models of elliptic geometry.

Under Euclid’s original assumptions, stated and unstated, the existence of parallel
lines was certain. Now that we have altered some of Euclid’s fundamental assumptions,
however, the existence of parallels is by no means certain. In fact, the contrary turns out
to be true: that in elliptic geometry there are no parallel lines! Some other interesting
properties include:

1. The area of a triangle is determined by its angle sum.

2. All lines that are perpendicular to a given line meet at a point. This point is called
the pole of the line.
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3. If two triangles have three angles congruent, then the triangles are congruent.

Finally, we give our substitution for the parallel postulate.

Axiom 2-2 (Elliptic Parallel Postulate). The upper base angles of the Saccheri quadri-
lateral are obtuse.

Theorem 2-1. Let ABCD be a Lambert quadrilateral with right angles at A, B, and C.
Extend AB to AE so that AB ∼= BE. Extend DC to DF so that DC ∼= CF . Then
AEFD is a Saccheri quadrilateral.

Figure 2-1

Proof. By SAS (Proposition 4), 4ABC ∼= 4EBC, so EC ∼= AC. Also, ∠ACB ∼=
∠ECB, and since ∠ACB is complementary with ∠DCA, this implies ∠DCA ∼= ∠FCE.
Then by SAS, 4ADC ∼= 4EFC. Thus EF ∼= AD. Also, we have ∠FEC + ∠BEC =
∠DAC + ∠BAC = ∠DAB = 90◦. Therefore AEFD is a Saccheri quadrilateral.

Corollary 2-1. The third angle of a Lambert quadrilateral is obtuse.

Theorem 2-2. In the Lambert quadrilateral ABCD with right angles at A, B, and C,
AD < BC and DC < AB.
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Figure 2-2

Proof. By way of contradiction, suppose that AD > BC. Then let E be the point on
AD such that AE ∼= BC. Then EC cuts the angle at C on its interior, and ABCE is
a Saccheri quadrilateral. This implies that ∠BCE is obtuse, but since ∠BCE is on the
interior of ∠C = 90◦, it must be less than or equal to 90◦, which is a contradiction. Thus,
AD < BC. Similarly, DC < AB.

Theorem 2-3. In elliptic geometry, any two lines intersect.

Proof. By way of contradiction, let ` and m be two lines that do not intersect. These lines
are of finite length, so there exists a point on ` which is of least distance to m. Call this
point A. This implies that the line segment perpendicular to m through A is shorter than
any other perpendicular to m through any point on `. Let B be the point of intersection
of this shortest segment with m. We will show:

1. BA meets ` at right angles.

2. There is a point E on ` which is closer to m than A.

Figure 2-3
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In order to prove 1, suppose BA does not meet ` at right angles. Then one of the
angles at A must be acute. Let A′ be a point on ` on the “side” of the acute angle. In
elliptic geometry, there are no “sides” of a line, because “betweenness” no longer applies,
but we use the term here to help visualize the argument. Let B′ be the point on m such
that

←−→
B′A′ is the perpendicular to m through A′. Since BA is shorter than B′A′, let C

be the point on B′A′ so that B′C ∼= BA. Then BACB′ is a Saccheri quadrilateral, so
∠CAB is obtuse. However, ∠CAB lies interior to ∠A′AB, which is acute, so we have a
contradiction. Therefore, BA meets ` at right angles.

Figure 2-4

For 2, let D be any point on m apart from B, and construct the perpendicular to m
at D. Let E be the point of intersection of this line with `. Then BDEA is a Lambert
quadrilateral, so by Theorem 2-2, DE < BA, but this contradicts our assumption that
BA was the shortest line segment through ` perpendicular to m. Therefore our original
assumption that ` and m do not intersect must be at fault.

Theorem 2-4. The upper base of the Saccheri quadrilateral is shorter than the lower base,
and the altitude is greater than both the arms.

Figure 2-5

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION



31

Proof. Let ABCD be a Saccheri quadrilateral, and let E and F be the points on the
lower base and upper base respectively that determine the altitude. Then AEFD and
EBCF are both Lambert quadrilaterals, so DF < AE and FC < EB by Theorem 2-2.
Therefore, DC < AB. Also by Theorem 2-2 we have AD < EF and BC < EF .

An interesting property of both hyperbolic and elliptic geometries is that they behave
almost like Euclidean geometry on small, restricted areas. For example, the smaller one
makes a triangle in either elliptic or hyperbolic geometry, the closer the angle sum is to
180◦. This also means that many of the propositions and results of regular Euclidean
plane geometry do hold in small portions of the elliptic plane. Recall that we could not
use Euclid’s propositions past Proposition 15, because the other propositions depend on
the assumption that lines may be extended infinitely. If we restrict the area we are working
in, however, and make our geometric figures sufficiently small, we are then able to extend
lines “enough” to be able to use, at least locally, some of these propositions we originally
discarded. In the next theorem, we restrict the area we are allowed to work on and borrow
Euclid’s Proposition 25 to prove that locally, the angle sum of a triangle is greater than
180◦.

Theorem 2-5. Locally, the angle sum of an elliptic triangle is greater than 180◦.

Proof. Let ABC be a right triangle with right angle at B. Let D be the point so that
AD is perpendicular to AB and AD ∼= BC.

Figure 2-6

Then ABCD is a Saccheri quadrilateral, so DC < AB. Then we have for triangles
4ADC and 4CBA that AD = BC with shared edge AC and DC < AB. So by Euclid’s
Proposition 25, ∠DAC < ∠BCA. Therefore, 90◦ = ∠DAC + ∠BAC < ∠BCA + ∠BAC,
and it follows that the angle sum of right triangle 4ABC is greater than 180◦. Since
we may subdivide any triangle into two right triangles by drawing the line segment per-
pendicular to the side subtending the largest angle and through the vertex of that angle,
we then have that in any triangle in our restricted area, the angle sum is greater than
180◦.

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION



32

Theorem 2-6. In general, the area of an elliptic triangle is greater than 180◦.

Idea of Proof. The proof of this theorem is done by breaking any triangle up into smaller
and smaller triangles until we are able to apply Theorem 2-5. Then we repeatedly apply
the theorem until we are able to show that the large triangle has angle sum greater than
180◦.

Theorem 2-7. The angles of a quadrilateral sum to more than 360◦.

Proof. Divide a quadrilateral into two triangles and apply Theorem 2-7.

We define the excess of a triangle in elliptic geometry to be the amount by which the
triangle differs from 180◦ and the excess of a quadrilateral to be the amount by which the
quadrilateral differs from 360◦.

Theorem 2-8. If a line cuts a triangle so as to form one quadrilateral and one triangle,
or two triangles, then the excess of the original triangle is the sum of the excesses of the
smaller triangle and quadrilateral, or of the two smaller triangles.

The proof is left as an exercise in the problem set.

Theorem 2-9. [AAA] If two triangles have the three angles of one congruent to the three
angles of the other respectively, then the triangles are congruent.

Figure 2-7

Proof. Let ABC and PQR be triangles with ∠A ∼= ∠P , ∠B ∼= ∠Q, and ∠C ∼= ∠R. It
follows that the excess of4ABC is equal to the excess of4PQR. By way of contradiction,
suppose that the two triangles are not congruent, and suppose (without loss of generality)
that AC > PR. Let D be the point on AC such that CD ∼= PR. Let E be the point on BC
such that ∠CDE ∼= ∠A (Proposition 23). Then by ASA, we have 4DEC ∼= 4PQR, and
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so ∠CDE ∼= ∠P , ∠DEC ∼= ∠Q, and ∠C ∼= ∠R. Therefore, the excess of 4DEC is equal
to the excess of 4PQR. DE partitions 4ABC into two triangles or into a triangle and
a quadrilateral (here we invoke Pasch’s Axiom). We will not lose anything by assuming
that DE partitions 4ABC into a triangle and a quadrilateral, because the other case
plays out similarly. Let EX() denote the excess of a figure. Then applying Theorem 2-
8, we have EX(4ABC) = EX(ABED) + EX(4DEC) = EX(ABED) + EX(4PQR) =
EX(ABED) + EX(4ABC). Thus EX(ABED) = 0, which contradicts Theorem 2-7.
Thus, 4ABC ∼= 4PQR.

Corollary 2-2. In elliptic geometry, similar triangles are always congruent.

Models of Elliptic Geometry

It may be helpful to visualize elliptic geometry as being somewhat like geometry on the sur-
face of the sphere, where lines are represented by diameters called great circles. Great cir-
cles may be described geometrically as the intersections of the sphere with planes through
the sphere’s center. This by itself is not a true model of elliptic geometry, however, because
it violates Euclid’s first postulate, namely that two points determine a unique line. Can
you find two points on the sphere that lie on more than one great circle? Such points are
called antipodal points on the sphere, and they are those points which are diametrically
opposite one another.

Figure 2-8

Riemann changed Euclid’s first postulate to read “there is at least one line through
any two distinct points.” If this postulate replaces Postulate 1, many results are the same.
This is sometimes called double elliptic geometry. Double elliptic geometry can then be
modeled by the sphere with great circles as lines. Elliptic geometry can be modeled by
the sphere as well, with one additional condition. Since we require the uniqueness of
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the line determined by two points, we identify antipodal points, that is, we consider two
points which are opposite one another on the sphere to be the same point. Then this
model satisfies all the axioms of elliptic geometry and is called the Real projective plane.
When we take the sphere of radius 1, called the unit sphere as our base sphere for the
Real projective plane, we have the following theorem by the French mathematician Albert
Girard (1595-1632), which illustrates the result in elliptic geometry that the area of a
triangle is determined by its angle sum. The theorem’s proof is explored in the problem
set.

Theorem 2-10. The area of a triangle on the Real projective plane is equal to its angle
sum minus π. That is, the area of such a triangle is equal to its excess. (Note that we use
radians here since we are working on the sphere.)

Since the Real projective plane is a sphere with antipodal points identified, we might
think of a portion of the projective plane as being like a hemisphere without the equator at
its boundary. Can you tell why the Plane-Separation Axiom fails to hold for this model?
Thus we are able to easily visualize how lines and figures behave in elliptic geometry, at
least on a portion of the elliptic plane. Results such as those in Theorems 2-3 and 2-6
no longer seem so strange, and one might even get an intuitive feel for how this geometry
behaves.

One finds applications of the results of elliptic geometry in areas such as navigation
(the shape of the earth is, after all, roughly spherical), and cosmology. Scientists believe
that the shape of the universe may determine its future. If the universe is shaped so as
to exhibit elliptic geometry, it is theorized that our universe at some point may cease
expansion and begin to implode!

Problem Set 2

1. List the axioms and assumptions we used in our development of elliptic geometry.
You may reference the appendix.

2. Explain why Corollary 2-1 follows from Theorem 2-1.

3. Prove that all lines which are perpendicular to a given line intersect at the same
point. This point is called the pole of the line. (Hint: Euclid’s Proposition 6 states
that if two angles of a triangle are equal, the sides which these angles subtend are
also equal. Use this, and a theorem about the Saccheri quadrilateral to do a proof
by contradiction.)

4. Discussion of Theorem 2-8:

a. Write a proof of Theorem 2-8.
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b. Consider the case in Theorem 2-8 where we partition the original triangle into
two smaller triangles. Now cut the two smaller triangles into smaller triangles.
What is the relationship of the excesses of the smaller triangles to the excess of
the original triangle? In general, if we proceed in this manner of cutting up the
triangle, what is the relationship of the smaller triangles to the larger ones?

5. Can you give an upper-bound for the excess of an elliptic triangle?

6. Similarly to hyperbolic geometry, the area of an elliptic triangle is proportional to
its excess. If an elliptic triangle Te of excess e has its area defined by A(Te) = k · e
for a constant k, what is an upper bound for the area of a triangle?

7. Given an elliptic triangle, construct a Saccheri quadrilateral of equal area by follow-
ing the steps in a. and b. below. Use great circles of the sphere as lines.

a. Let 4ABC be a triangle in the elliptic plane so that AB is the longest side.
Construct the midpoints of AC and BC. Label them D and E respectively.
Draw line

←→
DE.

b. Construct the perpendicular to DE through A, the perpendicular to DE through
B, and the perpendicular to DE through C. Label the points of intersections
of these perpendiculars with DE as F , G, and H respectively.

c. Prove: ABGF is a Saccheri quadrilateral, and that the area of ABGF is equal
to the area of 4ABC.

8. Given Saccheri quadrilateral in the elliptic plane, describe a procedure for construct-
ing an elliptic triangle of equal area.

9. Prove that an angle inscribed in a semicircle is always obtuse in elliptic geometry.

10. Use a ball (orange, or other round object) to represent the sphere. Use great circles
to draw on the ball a Saccheri quadrilateral. Approximate the measure of the upper
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base angles with a protractor. Are they acute, obtuse, or equal? How does the upper
base compare to the lower base?

11. Prove that in the double-elliptic geometry of the sphere, no two vertices of a triangle
are antipodal points.

12. In the double-elliptic geometry of the sphere, two distinct lines form a lune in a
hemisphere. Prove that the two angles of a lune formed in this way are congruent.

13. Recall that in the model of elliptic geometry on the unit sphere one way of ensuring
the uniqueness of a line determined by two points is to identify antipodal points.

a. Draw a sphere and demonstrate three pairs of antipodal points on it.

b. When we identify antipodal points, the resulting surface is called the Real
projective plane. Imagine what such a surface must look like. Try to draw a
picture of how you imagine it.

c. Explain why identifying antipodal points ensures the uniqueness of the line
determined by two distinct points on the sphere.

14. Understanding radians:

a. Consider the unit sphere. What is the radius of a great circle on the unit
sphere?

b. One radian is defined to be 180/π degrees. Let A and B be two opposite
points on a great circle of the unit sphere. Let C be the circle’s center. In
radians, what is the measure of ∠ACB? (∠ACB is an example of a central
angle because it has its vertex at the circle’s center.)

c. Draw two points on a great circle such that the central angle whose edges pass
through those points has a measure of π/2 radians.

d. The length of a circle is π times the circle’s diameter. What is the length of
a segment on a great circle of the unit sphere which subtends a central angle
of measure π/2 radians, π/4 radians, and π radians? What is the relationship
between the central angle and the arc it subtends?

e. Repeat part d., but this time with a circle of arbitrary radius r. (Note: The
relationship you discover between the central angle and the corresponding arc
is one reason why it is nice to use radians when working with circles or spheres.)

15. Consider the Real projective plane on the unit sphere as a model of elliptic geometry.

a. The length of a line on the unit sphere is 2π. What is the length of a line on
the Real projective plane?
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b. The area of the unit sphere is 4π. What is the area of the Real projective plane?

16. Exploring the proof of Theorem 2-10:

a. Let 4ABC be a triangle on the Real projective plane, which for our purposes
will look like a hemisphere of the unit sphere. Let 4ABC be determined by
lines `, m, and k as in the figure below. Then lines ` and m meet at antipodal
points A and A′ and determine a lune. What is the area of the lune in terms
of the angle α?

i. Hint 1: α is the angle of the triangle at point A, but it is also the central
angle formed by the equator that equally divides the lune as seen in the
figure above.

ii. Hint 2: Since 360◦ = 2π radians, the area of the lune times 2π/α equals
the area of the sphere. Convince yourself that this is true, and then use it
to determine the area of the lune.

b. Similarly to part a., what is the area of the lune determined by lines ` and k?
By lines m and k?

c. Since great circles of the unit sphere meet at antipodal points and equally divide
the sphere into two hemispheres, for every triangle in one hemisphere there is
a corresponding antipodal triangle in the opposite hemisphere. Show that the
area of a triangle is equal to the area of its antipodal triangle.

d. Imagine we could break apart and flatten the sphere and put it on a table to
look at. Then it might look something like the figure below, where ∆′ is the
antipodal triangle of ∆, C ′ is the antipodal point of C, and so on.
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Then the area of ∆ equals the area of ∆′, the area of ∆1 equals the area of ∆′
1,

and so on. Suppose that ∆ is the same triangle as in part a. What is the area
of ∆ + ∆1, ∆ + ∆2 and ∆ + ∆3?

e. The area of the unit sphere is 4π, so 2∆ + 2∆1 + 2∆2 + 2∆3 = 4π. Use this,
and your results from part d., to show that ∆ = α + β + µ− π as required by
Theorem 2-10.
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Chapter 3: Taxicab Geometry

We have thus far made a cursory examination of the two most notable forms of non-
Euclidean geometry: hyperbolic and elliptic. We now give a brief introduction to taxicab
geometry. Taxicab geometry involves working in the Euclidean coordinate plane, and
satisfies all of Euclid’s postulates and assumptions except the assumption that all straight
lines may be made to coincide. This forfeits us the general use of congruence conditions
for triangles in taxicab geometry. The reader might wonder at such an odd name for
this geometry, seemingly un-mathematical when compared to the titles “elliptic” and
“hyperbolic.” The name arises intuitively from the way of measuring distance in this
geometry. The usual way of measuring distance in Euclidean geometry is through use of
the Pythagorean Theorem.

This gives us that if S = (x1, y1) and T = (x2, y2) are two points in the Euclidean
coordinate plane, the distance between them is given by

dE(S, T ) =
È

(x1 − x2)2 + (y1 − y2)2,

where we denote the Euclidean distance function by dE . One begins a discussion of taxicab
geometry by redefining this distance function. We still work in the Euclidean coordinate
plane, and lines, angles, and points are all the same, but by changing the way we measure
distance, we are brought to an entirely different geometry.

Definition 3.1. Let S and T be as in the previous paragraph, and let dT denote the
taxicab distance function. Then dT is called the taxicab metric, and dT (S, T ) = |x1 −
y1|+ |x2 − y2|.

Imagine you live in apartment downtown in the imaginary City X, and you need to get
to the opera hall. You live reasonably far away, so you decide to take a taxi. As with many
cities, the map of the streets of City X looks like a grid. In Figure 3-1, the solid thin line
represents the distance from your apartment to the opera hall as given by the Euclidean
metric dE , while the solid thick line represents the distance as given by the taxicab metric
dT ; so dE(apartment, opera hall) = 5, while dT (apartment, opera hall) = 7.

Notice that the distance given by dT is precisely the way a taxicab might travel along
the streets of City X to get to the opera hall. This is where taxicab geometry derives
its name. Thus we must think of distance in this geometry as though we had to travel
through the infinite streets of City X (or parallel to them through city blocks) to get from
point to point.
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Figure 3-1

The taxicab metric alters our notion of certain geometric shapes. For example, a circle
of radius r around point P (we will write C(r, P )) is defined to be the set of all points of
distance r from p. We will denote C(r, P ) under the usual Euclidean metric by CdE

(r, P ),
and C(r, P ) under the taxicab metric by CdT

(r, P ). We all know what a circle in regular
Euclidean coordinate geometry looks like. Think for a moment how our new notion of
distance alters the way we draw a circle in the plane. Figure 3-2 shows CdE

(2, P ) on the
left, and CdT

(2, P ) on the right.

Figure 3-2

So circles in taxicab geometry are squares! Another consequence of the taxicab metric
is that it destroys our ability to apply the congruence conditions for triangles so often used
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in other geometries.

Theorem 3-1. In taxicab geometry, the SAS, ASA, SAA, and SSS congruence conditions
for triangles to not hold in general.

Figure 3-3

Proof. We exhibit a counter example to the SAS congruence condition. The reader is
asked to demonstrate counterexamples for the other congruence conditions in the problem
set. In Figure 3-3 we see two clearly incongruent triangles 4PQR and 4PQ′R′ by Eu-
clidean standards. Note that we measure the length of a segment by the distance between
its endpoints. Then, since dT (P, Q) = dT (P, Q′), and dT (P, R) = dT (P,R′), and also
∠RPQ ∼= ∠R′PQ′, if the SAS congruence condition were to hold, then we would have
4PQR ∼= 4PQ′R′. However, dT (Q,R) 6= dT (Q′, R′), so 4PQR � 4PQ′R′.

One concept we have made continual use of in all the geometries we have discussed so
far is the distance from a point to a line. The reader should already be familiar with the
usual definition of the distance from a point P to a line `. The distance is determined
by the segment QP , where Q is the projection of P on `. This also applies in hyperbolic
and elliptic geometries as well as Euclidean; however, the definition is quite different in
taxicab geometry.

Definition 3.2. Let ` be a line and P a point. Then the distance from P to ` is denoted
dT (P, `), and dT (P, `) = min dT (P, Q), where Q is a point on `.

This may seem a bit analytical, and the reader may prefer a more intuitive description
of how to determine the distance from a point to a line. One way to think about the
distance in Euclidean geometry from a point P to a line ` is to think of inflating a circle
centered at P until it just intersects `. The radius of the inflated circle is then the distance
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from P to `, denoted dE(P, `) since we refer to the Euclidean metric. Recall what circles
look like in taxicab geometry, and apply the same procedure. We are left with the following
result, the proof of which follows from the definition of distance and is left to the reader
to explore:

Theorem 3-2. Let ` be a line in the Euclidean coordinate plane with slope a1. Let P be
a point.

i. If |a| < 1, then dT (P, `) is the vertical distance from P to `.

ii. If |a| > 1, then dT (P, `) is the horizontal distance from P to `.

iii. If |a| = 1, then dT (P, `) is either the vertical or the horizontal distance from P to `,
for they are the same.

Now that we have some notion of how distance works in taxicab geometry, we may
start to talk about objects being equidistant.

Let P and Q be points in taxicab geometry. Then the set of all points equidistant
from P and Q is called the taxicab midset of P and Q. Let ` and m be lines in taxicab
geometry. Then the set of all points equidistant from ` and m is called taxicab midset of
` and m.

In Euclidean geometry, the midset of two points P and Q is the perpendicular bisector
of the segment PQ. In order to find the center of the circle that inscribes a triangle4ABC
in Euclidean geometry, one calculates the intersection point of the three Euclidean midsets
of the vertices A, B, and C, that is, the intersection point of the perpendicular bisectors
of the triangle’s edges. How might we use a similar procedure to find the taxicab circle
that circumscribes a triangle? As it turns out, we are not always able to find the circle’s
center.

Theorem 3-3. It is not always possible in taxicab geometry to circumscribe a triangle in
a circle.

Proof. The reader is asked to think about the proof of this theorem in the problem
set.

Thus far we have explored a few properties of taxicab geometry which may seem inter-
esting in themselves. The question may arise, however, whether there are any significant
applications to this geometry. Taxicab geometry is a better model of urban geography
than Euclidean geometry, and for that reason it has applications to urban construction
problems. Some exercises in the problem set hint at these applications, which include
finding optimal locations to build businesses and drawing district boundaries to fit certain

1Recall from algebra that if (x1, y1) and (x2, y2) are two points on `, then a = y2−y1
x2−x1

.
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criteria. In this way, taxicab geometry proves to be as “useful” as other non-Euclidean
geometries, and is perhaps more accessible to the reader than either hyperbolic or elliptic
geometry.

Problem Set 3

For any problem that references City X, refer to Figure 3-1. Use the taxicab metric unless
otherwise stated.

1. When we say that lines can not be made to “coincide” in taxicab geometry, we
mean that we cannot move lines around in the plane without changing the distance
between points on the line. Let P = (1, 0), Q = (5, 3), P ′ = (−1, 0), and Q′ = (4, 0).

a. Calculate dE(P, Q) and dE(P ′, Q′). This means PQ ∼= P ′Q′ in Euclidean ge-
ometry.

b. Calculate dT (P, Q) and dT (P ′, Q′).

c. Why does this show that lines in taxicab geometry cannot always be made to
coincide?

2. In the scenario presented in Figure 3-1, the taxi driver travels 7 blocks to get you to
the opera house. If the taxi driver has to pick up a second fare at the corner of 3rd

and C on his way to the opera hall, will he travel more, less, or the same number of
blocks he would have traveled had he gone straight to the opera hall? (Presume all
streets are two-way, and that he takes the shortest route.)

3. Suppose you work at a store on the corner of 4th and D streets, and that the nearest
restaurant is at 1st and D in City X. You only have a very limited time for lunch.
Supposing you walk the streets of City X at a constant speed no matter where you
go, would it be faster to eat at the restaurant or go home for lunch? Now suppose
you can walk “as the crow flies” to your apartment, so you do not have to stay on
the streets. Should you eat at the restaurant or go home?

4. Referencing Figure 3-1 when necessary, graph the points and calculate the following:

a. dT ((1st and A), (5th and C))

b. dT ((7th and G), (2nd and G))

c. dE((1st and A), (5th and C))

d. dE((7th and G), (2nd and G))

e. dT ((3,−2), (−2, 4))

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION



44

f. dT ((4,−3), (−2, 5))

g. dE((3,−2), (−2, 4))

h. dE((4,−3), (−2, 5))

i. dT ((1/2, 1/2), (−2, 3/4))

j. dT ((3.5, 2.3), (−2.3, 3.5))

5. For each set of points P and Q, find the set of points in taxicab geometry that are
equidistant from P and Q. This set is called the taxicab midset of the points P and
Q:

a. P = (−1, 0) and Q = (3, 2)

b. P = (0, 1) and Q = (2, 5)

c. P = (0, 0) and Q = (3, 3)

6. City X has two high schools: one at 1st and B, and one at 7th and D. Draw a school
district boundary so that each student in City X attends the high school nearest
their home.

7. Redraw the school district boundary to accommodate a new high schools being built
at 4th and G.

8. There are three major corporate office buildings in City X: one at 1st and C, one
at 7th and F , and one at 5th and A. Local Daycare wants to open a new daycare
facility at equal distance from each of the three office buildings. Where should it
open this facility?

9. Repeat exercises 4, 5, and 6, but this time use the usual Euclidean metric dE .

10. Exhibit a counterexample in taxicab geometry for the following congruence condi-
tions:

a. ASA

b. SAA

c. SSS

11. Find an isosceles triangle in taxicab geometry with incongruent base angles.

12. Find a triangle in taxicab geometry with two congruent angles which is not isosceles.

13. Find in taxicab geometry a right triangle which is equilateral.

14. Let ` be the line through (0, 2) and (1, 3). Calculate:
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a. dT ((0, 0), `)

b. dT ((2,−4), `)

c. dT ((−2, 4), `)

d. dE((0, 0), `)

e. dE((2,−4), `)

f. dE((−2, 4), `)

15. For which lines in the coordinate plane does the taxicab distance from a point to a
line equal the Euclidean distance from a point to a line.

16. Graph the points (1, 2) and (−4, 3), and let ` be the line through these points.

a. Graph the set of all points P such that dT (P, `) = 1.

b. Graph the set of all points P such that dE(P, `) = 1.

c. Graph the set of all points P such that dT (P, `) = 3.

d. Graph the set of all points P such that dE(P, `) = 3.

17. Can you find a line ` such that the set of all points P such that dT (P, `) = 1 is the
same as set of all points P such that dE(P, `) = 1?

18. Let A = (3,−1), B = (0, 7), and C = (−7,−3).

a. Circumscribe an Euclidean circle about 4ABC.

b. Circumscribe a taxicab circle about 4ABC.

19. Let A = (−3, 1), B = (0, 2), and C = (5, 6). Try circumscribing a circle about
4ABC. What goes wrong? Can you find another triangle about which it is impos-
sible to circumscribe a circle? Note that this proves Theorem 3-2.

20. Let A = (3,−3), B = (−3, 6), and C = (5, 4). Recall from Euclidean geometry that
the center of an inscribed circle of a triangle is the intersection of the angle bisectors
of the triangle (which is the intersection of the midsets of the edges of the triangle).

a. Inscribe a Euclidean circle in 4ABC.

b. Think of a procedure for finding the center of the taxicab circle inscribed in a
triangle.

c. Inscribe a taxicab circle in 4ABC.

21. Do you think it is always possible to inscribe a taxicab circle in a triangle? Do you
think the inscribed taxicab circle is unique?
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22. City X has been experiencing smog problems. The mayor decides to build a new
trolley station with three trolleys that each travel to a major drop-off point in hopes
of reducing the smog in the city. The drop off point for Trolley 1 is to be located
at 5th and A; the drop off point for Trolley 2 is to be located at 1st and G; and
the drop off point for Trolley 3 is to be located at 7th and D. Due to lack of city
funds, the mayor wants to build the trolley station at a location so that the sum of
the distances traveled by the trolleys from the station to their drop off point is at a
minimum. Where should the mayor have the trolley station built?
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Chapter 4: Appendix

We list for the reader Euclid’s postulates, common notions, unstated assumptions, and
propositions from Book I of The Elements. These are referenced frequently throughout
the text. Most of the translation is taken directly or paraphrased from [6].

Postulates:

1. There is a unique line through any two distinct points.

2. A line segment segment may be continued in a line beyond each of its endpoints.

3. A circle of any (positive, real) radius about any point may be constructed.

4. All right angles are equal to one another.

5. If a transversal cuts two lines so as to form acute interior angles on the same side,
then the lines intersect somewhere on the side of the acute angles.

Common Notions:

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

Unstated Assumptions:

1. Lines are infinite in extent.

2. Lines and angles may be made to coincide, and therefore moved around in the plane.

3. Plane-Separation Axiom: Each line in a plane separates all the points of the
plane that are not on the line into two nonempty half-planes with the following
properties:

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION



48

(a) The half planes are disjoint convex sets.

(b) If P is in one half plane and Q is in the other half plane, the segment PQ
intersects the line that separates the plane.

4. Betweenness: If A, B, and C are distinct colinear points, then exactly one of the
following holds: A is between C and D, B is between A and C, or C is between A
and B. Moreover, given distinct points A and B, there is always a point C such that
C lies between A and B on the line

←→
AB.

Propositions:

1. On a given finite straight line to construct an equilateral triangle.

2. To place at a given point (as an extremity) a straight line equal to a given straight
line.

3. Given two unequal straight lines, to cut off from the greater a straight line equal to
the less.

4. (SAS) If two triangles have the two sides equal to two sides respectively, and have
the angles contained by the equal straight lines equal, they will also have the base
equal to the base,the triangle will be equal to the triangle, and the remaining angles
will be equal to the remaining angles respectively, namely those which the equal
sides subtend.

5. In isosceles triangles the angles at the base are equal to one another, and, if the
equal straight lines be produced further, the angles under the base will be equal to
one another.

6. If in a triangle two angles be equal to one another, the sides which subtend the equal
angles will also be equal to one another.

7. Given two straight lines constructed on a straight line (from its extremities) and
meeting in a point, there cannot be constructed on the same straight line (from its
extremities), and on the same side of it, two other straight lines meeting in another
point and equal to the former two respectively, namely each to that which has the
same extremity with it.

8. (SSS) If two triangles have the two sides equal to two sides, respectively, and have
also the base equal to the base, they will also have the angles equal which are
contained by the equal straight lines.

9. To bisect a given rectilinear angle.
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10. To bisect a given finite straight line.

11. To draw a straight line at right angles to a given straight line from a given point on
it.

12. To a given infinite straight line, from a given point which is not on it, to draw a
perpendicular straight line.

13. If a straight line set up on a straight line make angles, it will make either two right
angles or angles equal to two right angles.

14. If with any straight line, and at a point on it, two straight lines not lying on the
same side make the adjacent angles equal to two right angles, the two straight lines
will be in a straight line with one another.

15. If two straight lines cut one another, they make the vertical angles equal to one
another.

16. (Exterior Angle Theorem) In any triangle, if one of the sides be produced, the
exterior angle is greater than either of the interior and opposite angles.

17. In any triangle two angles taken together in any manner are less than two right
angles.

18. In any triangle the greater side subtends the greater angle.

19. In any triangle the greater angle is subtended by the greater side.

20. (Triangle Inequality) In any triangle two sides taken together in any manner are
greater then the remaining one.

21. If on one of the sides of a triangle, from its extremities, there be constructed two
straight lines meeting within the triangle, the straight lines so constructed will be
less than the remaining two sides of the triangle, but will contain a greater angle.

22. Out of three straight lines, which are equal to three given straight lines, to construct
a triangle: thus it is necessary that two of the straight lines taken together in any
manner should be greater than the remaining one.

23. On a given straight line and at a point on it to construct a rectilineal angle equal to
a given rectilineal angle.

24. If two triangles have the two sides equal to two sides respectively, but have the one
of the angles contained by the equal straight lines greater than the other, they will
also have the base greater than the base.
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25. If two triangles have the two sides equal to two sides respectively, but have the base
greater than the base, they will also have the one of the angles contained by the
equal straight lines greater than the other.

26. (AAS, ASA) If two triangles have two angles equal to two angles respectively, and
one side equal to one side, namely, either the side adjoining the equal angles, or that
opposite one of the equal angles, then the remaining sides equal the remaining sides
and the remaining angle equals the remaining angle.

27. If a straight line falling on two straight lines makes the alternate angles equal to one
another, then the straight lines are parallel to one another.

28. If a straight line falling on two straight lines makes the exterior angle equal to the
interior and opposite angle on the same side, or the sum of the interior angles on
the same side equal to two right angles, then the straight lines are parallel to one
another.

29. A straight line falling on parallel straight lines makes the alternate angles equal to
one another, the exterior angle equal to the interior and opposite angle, and the sum
of the interior angles on the same side equal to two right angles.

30. Straight lines parallel to the same straight line are also parallel to one another.

31. To draw a straight line through a given point parallel to a given straight line.

32. In any triangle, if one of the sides is produced, then the exterior angle equals the
sum of the two interior and opposite angles, and the sum of the three interior angles
of the triangle equals two right angles.

33. Straight lines which join the ends of equal and parallel straight lines in the same
directions are themselves equal and parallel.

34. In parallelogrammic areas the opposite sides and angles equal one another, and the
diameter bisects the areas.

35. Parallelograms which are on the same base and in the same parallels equal one
another.

36. Parallelograms which are on equal bases and in the same parallels equal one another.

37. Triangles which are on the same base and in the same parallels equal one another.

38. Triangles which are on equal bases and in the same parallels equal one another.
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39. Equal triangles which are on the same base and on the same side are also in the
same parallels.

40. Equal triangles which are on equal bases and on the same side are also in the same
parallels.

41. If a parallelogram has the same base with a triangle and is in the same parallels,then
the parallelogram is double the triangle.

42. To construct a parallelogram equal to a given triangle in a given rectilinear angle.

43. In any parallelogram the complements of the parallelograms about the diameter
equal one another.

44. To a given straight line in a given rectilinear angle, to apply a parallelogram equal
to a given triangle.

45. To construct a parallelogram equal to a given rectilinear figure in a given rectilinear
angle.

46. To describe a square on a given straight line.

47. In right-angled triangles the square of the side opposite the right angle equals the
sum of the squares of the sides containing the right angle.

48. If in a triangle the square of one of the sides equals the sum of the squares of the
remaining two sides of the triangle, then the angle contained by the remaining two
sides of the triangle is right.

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION



52

Bibliography

[1] Bonola, Roberto, Non-Euclidean Geometry, Translated by H.C. Carslaw, Cosimo
Inc., 2007.

[2] Dunham, Wiliam, Journey Through Genius, pp. 55-60, Penguin Books, 1990.

[3] Gans, David, An Introduction to Non-Euclidean Geometry, Academic Press, 1973.

[4] Gans, David, “An Introduction to Elliptic Geometry”, The American Mathematical
Monthly, Vol. 62, No. 7, Part 2: Contributions to Geometry, Aug-Sept, 1955, pp.
66-75.

[5] Gardner, Bob, “Hyperbolic Geometry”,
http://www.etsu.edu/math/gardner/noneuclidean/hyperbolic.pdf.

[6] Heath, Sir Thomas Little, The thirteen books of Euclid’s Elements translated from the
text of Heiberg with introduction and commentary, Dover Publications, New York,
1956.

[7] Katz, Victor J, A History of Mathematics: An Introduction, 2nd ed., Addison-Wesley,
New York, 1998.

[8] Manning, Henry Parker, Non-Euclidean Geometry, Ginn and Company Publishers,
1901.

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION


