Situation 35: Solving Quadratic Equations Prepared at Penn State

Mid-Atlantic Center for Mathematics Teaching and Learning Date last revised: June 30, 2005 - Jeanne Shimizu

Prompt

In Algebra 1 classes some students solve quadratic equations as follows:

Solve for $\mathrm{x}: x^{2}=x+6$.
Students' work:

$$
\sqrt{x^{2}}=\sqrt{x+6}
$$

$$
x=\sqrt{x+6}
$$

Commentary

Mathematical Foci

Mathematical Path 1

The solutions to the three equations can be compared graphically to determine whether the equations are equivalent. Equations are equivalent if they have the same solutions.

Figure 1. $Y 1=x^{2}$ and $Y 2=x+6 . \mathrm{Y} 1$ and Y 2 intersect at $\mathrm{X}=-2,3$.

Figure 2. $Y 3=\sqrt{x^{2}}$ and $Y 4=\sqrt{x+6} . \quad Y 3$ and $Y 4$ intersect at $x=-2,3$.

Figure 3. $\mathrm{Y} 5=\mathrm{x}$ and $Y 4=\sqrt{x+6} . \mathrm{Y} 4$ and Y 5 intersect at $\mathrm{x}=3$

The last equation, $x=\sqrt{x+6}$, is not equivalent to the other two equations since its solution is not the same as that of the other equations.

Mathematical Path 2

The graphs of $\sqrt{x^{2}}=\sqrt{x+6}$ can lead to a discussion of the equivalence of $f(x)=\sqrt{x^{2}}$ and $g(x)=|x|$.

The two functions have the same domain and give rise to the same set of points.

$$
\text { So, } \sqrt{x^{2}}=|x|= \begin{cases}x, & \text { if } x>0 \\ 0, & \text { if } x=0 . \\ -x, & \text { if } x<0\end{cases}
$$

Mathematical Path 3

The quadratic formula can be used to solve $x^{2}=x+6$.

$$
\begin{aligned}
& x^{2}=x+6 \\
& x^{2}-x-6=0 \\
& x=\frac{1 \pm \sqrt{1-4(1)(-6)}}{2}=\frac{1 \pm 5}{2}=3,-2
\end{aligned}
$$

Mathematical Path 4

The quadratic equation, $x^{2}=x+6$, can be solved by factoring and applying the zero product property.

$$
\begin{aligned}
& x^{2}=x+6 \\
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x-3=0, x+2=0 \\
& x=3,-2
\end{aligned}
$$

References

none

