Situation 35: Solving Quadratic Equations Prepared at Penn State Mid-Atlantic Center for Mathematics Teaching and Learning Date last revised: June 30, 2005 – Jeanne Shimizu

Prompt

In Algebra 1 classes some students solve quadratic equations as follows:

Solve for x: $x^2 = x + 6$. Students' work: $\sqrt{x^2} = \sqrt{x+6}$ $x = \sqrt{x+6}$

Commentary

Mathematical Foci

Mathematical Path 1

The solutions to the three equations can be compared graphically to determine whether the equations are equivalent. Equations are equivalent if they have the same solutions.

Figure 1. $Y1 = x^2$ and Y2 = x + 6. Y1 and Y2 intersect at x = -2, 3.

Figure 2. $Y3 = \sqrt{x^2}$ and $Y4 = \sqrt{x+6}$. Y3 and Y4 intersect at x = -2, 3.

Figure 3. Y5 = x and $Y4 = \sqrt{x+6}$. Y4 and Y5 intersect at x = 3

The last equation, $x = \sqrt{x+6}$, is not equivalent to the other two equations since its solution is not the same as that of the other equations.

Mathematical Path 2

The graphs of $\sqrt{x^2} = \sqrt{x+6}$ can lead to a discussion of the equivalence of $f(x) = \sqrt{x^2}$ and g(x) = |x|.

The two functions have the same domain and give rise to the same set of points.

So,
$$\sqrt{x^2} = |x| = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -x, & \text{if } x < 0 \end{cases}$$

Mathematical Path 3

The quadratic formula can be used to solve $x^2 = x + 6$.

$$x^{2} = x + 6$$

$$x^{2} - x - 6 = 0$$

$$x = \frac{1 \pm \sqrt{1 - 4(1)(-6)}}{2} = \frac{1 \pm 5}{2} = 3, -2$$

Mathematical Path 4

The quadratic equation, $x^2 = x + 6$, can be solved by factoring and applying the zero product property.

$$x^{2} = x + 6$$

$$x^{2} - x - 6 = 0$$

$$(x - 3)(x + 2) = 0$$

$$x - 3 = 0, x + 2 = 0$$

$$x = 3, -2$$

References

none

END OF SITUATION – END OF SITUATION – END OF SITUATION