The University of Georgia

A simple proof of why a circle is not squareable might be this:

Let the circle have a radius of 1 . Then the area of the circle is $\pi 1^{2}=\pi$. Therefore in order for the circle to be quadrable then $\pi=x^{2}$ and $x=\sqrt{\pi}$. Since π is not constructible by straightedge and compass then the circle is not quadrable.

Lindemann, in 1882, was able to prove that circles are not quadrable. He used a formula of Euhler's and proofs of Hermite. Euhler using the expansions of various series, $e^{i x}$, showed that $e^{i x}=\cos x+i \sin x$, and by substituting π for x, $e^{\pi i}=-1$. Hermite proved that in an equation of the form $" a_{0}+a_{1} e^{\rho 1}+a_{2} e^{p 2}+\ldots=0$ the exponents and coefficients are not only not integers but that they cannot all be algebraic numbers." (Bold) Lindemann was able to show in the equation $e^{\pi i}+1=0$, since 1 and i are algebraic then π must be transcendental. This means π cannot be a root of a polynomial equation. Therefore circles are not quadrable.
(Bold)

