

The Babylonian Square Root Method

If the Babylonians need to know the approximation of the \sqrt{A}. They first would chose a number x_{0}. If x_{0} is too large then $\frac{A}{x_{0}}<\frac{A}{\sqrt{A}}=\sqrt{A}$, so x_{0} is too small an estimate of \sqrt{A}. Similarly, if x_{0} is too small then A / x_{0} is too large and estimate of \sqrt{A}. Either x_{0} or A / x_{0} is an underestimate and the other is an overestimate. The Babylonians decided to take an average:

$$
x_{1}=\frac{1}{2}\left(x_{0}+\frac{A}{x_{0}}\right)
$$

This would give them a better approximation to \sqrt{A}. Using an iterative method, that is substituting x_{1} back into the equation over and over would give a better approximation each time.

Lets' try when $\mathrm{A}=3$, that is what is the $\sqrt{3}$? Chose $x_{0}=1$.

$$
\begin{aligned}
& x_{1}=1 / 2(1+3 / 1)=2 \\
& x_{2}=1 / 2(2+3 / 2)=7 / 4=1.75 \\
& x_{3}=1 / 2(7 / 4+3 /(7 / 4))=97 / 56=1.73214 \\
& x_{4}=1 / 2(97 / 56+3 /(97 / 56))=18817 / 10864=1.7320508
\end{aligned}
$$

Which is correct to seven decimal places. Do you recognize the similarity with Newton's iterative formula? (Edwards)

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

