

The Babylonian Square Root Method

If the Babylonians need to know the approximation of the \sqrt{A} . They first would chose a number x_0 . If x_0 is too large then $\frac{A}{x_0} < \frac{A}{\sqrt{A}} = \sqrt{A}$, so x_0 is too small an estimate of \sqrt{A} . Similarly, if x_0 is too small then A/x_0 is too large and estimate of \sqrt{A} . Either x_0 or A/x_0 is an underestimate and the other is an overestimate. The Babylonians decided to take an average:

$$x_1 = \frac{1}{2}(x_0 + \frac{A}{x_0})$$

This would give them a better approximation to \sqrt{A} . Using an iterative method, that is substituting x_1 back into the equation over and over would give a better approximation each time.

Lets' try when A = 3, that is what is the $\sqrt{3}$? Chose $x_0 = 1$.

$$x_{1} = \frac{1}{2}(1+3/1) = 2$$

$$x_{2} = \frac{1}{2}(2+3/2) = \frac{7}{4} = 1.75$$

$$x_{3} = \frac{1}{2}(\frac{7}{4}+\frac{3}{(7/4)}) = \frac{97}{56} = 1.73214$$

$$x_{4} = \frac{1}{2}(\frac{97}{56}+\frac{3}{(97/56)}) = 18817/10864 = 1.7320508$$

Which is correct to seven decimal places. Do you recognize the similarity with Newton's iterative formula? (Edwards)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$