Situation: Modular Arithmetic Prepared at UGA
Center for Proficiency in Teaching Mathematics
7/17/2006 - Pawel Nazarewicz

1 Prompt

A group of high school Math Club members was examining the concept of modular arithmetic. They were working in $\bmod 5$, and as they were getting the hang of things, a student asked if it's possible to write fractions in mod 5. For example, what is the meaning of the statement below?

$$
\frac{3}{4} \bmod 5
$$

2 Commentary

Does this even make sense? Modulo 5 has only 5 elements: $0,1,2,3$, and 4. Anything else is in the same equivalence class as one of those elements. Does it makes sense to define a fraction to be equivalent to one of those 5 elements? What are the different definitions of fractions?

We will explore a situation through which we set up a definition of $\frac{3}{4}$ in modulo 5 and discuss the role of fractions in in Real number system.

Mathematical Focus 1: Modular Arithmetic

Before we can talk about fractions in a certain modulo, we need to understand what it means for $a \cong b \bmod c$ (Read: a is congruent to b modulo c).

$$
\begin{aligned}
& a \cong b \quad \bmod c \Rightarrow \\
& a-b \cong 0 \quad \bmod c \Rightarrow \\
& c \mid(a-b)
\end{aligned}
$$

This means that c is a factor of $a-b$. For example, $30 \cong 2 \bmod 4$ since $30-2=28$ and 4 is a factor of 28 . When working in $\bmod 5$,

$$
0 \cong 5 \cong 10 \cong 15 \cong \ldots \bmod 5
$$

$$
\begin{aligned}
& 1 \cong 6 \cong 11 \cong 16 \cong \ldots \quad \bmod 5 \\
& 2 \cong 7 \cong 12 \cong 17 \cong \ldots \quad \bmod 5
\end{aligned}
$$

Thus, in $\bmod 5$, there are only 5 elements: $0,1,2,3$, and 4 .

Mathematical Focus 2: A Field

A Field is a set of elements with every non-zero element having a Multiplicative Inverse. The set $\{0,1,2,3,4\}$ is a field because $2 \cdot 3 \cong 1 \bmod 5$ and $4 \cdot 4 \cong 1 \bmod 5.1$ is also its own multiplicative inverse.

One of the ways to look at fractions is a convenient notation which when added to the Integers make them a field. So $\frac{1}{3}$ can be viewed as the multiplicative inverse of 3 . The reason we need to introduce this notation with the integers is that 3 does not have a multiplicative in the Integers.

Because Modulo 5 is a Finite Field, there is not need to introduce fractions, thus, $\frac{3}{4}$ doesn't even make sense in that field. On the other hand, if we define a fraction 300

Mathematical Focus 3: Multiplicative Inverse

Fractional notation is actually a convenient way of writing multiplicative inverses of elements of a certain set of numbers. A multiplicative inverse is defined as an element a^{-1} such that:

$$
a^{-1} \cdot a=a \cdot a^{-1}=1
$$

When we are working with rational and real numbers, $\frac{1}{a}$ is essentially the multiplicative inverse of the element a, because:

$$
\frac{1}{a} \cdot a=1=a \cdot a^{-1}
$$

The elements in modulo 5 are $\{0,1,2,3,4\}$. So $\frac{1}{2} \bmod 5$ is an element a such that:

$$
a \cdot 2 \cong 1 \bmod 5
$$

Let's examine the possibilities:

$$
\begin{aligned}
& 1 \cdot 2 \cong 2 \quad \bmod 5 \\
& 2 \cdot 2 \cong 4 \quad \bmod 5 \\
& 3 \cdot 2 \cong 6 \quad \bmod 5 \cong 1 \quad \bmod 5 \\
& 4 \cdot 2 \cong 8 \quad \bmod 5 \cong 3 \quad \bmod 5 \\
& 0 \cdot 2 \cong 0 \quad \bmod 5
\end{aligned}
$$

So $\frac{1}{2}=2^{-1}=3 \bmod 5$. Similarly, we find the following unit fractions in $\bmod 5$:

$$
\begin{aligned}
& \frac{1}{3}=2 \bmod 5 \\
& \frac{1}{4}=4 \bmod 5
\end{aligned}
$$

Mathematical Focus 4: Equivalence Classes

$\frac{a}{b}$ can be thought of as the fraction $\frac{1}{b}, a$ times. So $\frac{a}{b}=a \cdot \frac{1}{b}$. This is tied into the concept of multiplication as repeated addition. Thus, since $\frac{1}{4}=4$ $\bmod 5$:

$$
\frac{3}{4}=3 \cdot \frac{1}{4} \cong 3 \cdot 4=12 \cong 2 \quad \bmod 5
$$

One of the things which makes fractional notation function is the notion of an equivalance class. Two fractions, $\frac{a}{b}$ and $\frac{c}{d}$ are in the same equivalence class if the following is true:

$$
\begin{gathered}
\frac{a}{b}=\frac{c}{d} \\
\Rightarrow \\
a d-c b=0
\end{gathered}
$$

So if we are to talk about $\frac{3}{4}$, we hope that it's in the same equivalence class
as $\frac{6}{8}$. This is true though. Suppose we can define a fraction $\frac{6}{8} \cong a \bmod 5$.

$$
\begin{aligned}
& \frac{6}{8} \cong a \quad \bmod 5 \\
& 6 \cong 8 a \quad \bmod 5 \\
& 3 \cong 4 a \quad \bmod 5 \\
& \frac{3}{4} \cong a \quad \bmod 5
\end{aligned}
$$

