Situation: Constructing a Tangent
 Prepared at UGA

Center for Proficiency in Teaching Mathematics

7/29/2006 - Pawel Nazarewicz

Prompt

A student in a Geometry class was shown how to construct a tangent to a circle from a point A outside the circle:

1. First, construct the segment $O A$ and find its midpoint M.
2. Next, using M as the center of a new circle, construct a circle of radius $M A$.
3. The point of intersection between the two circles, B, is where we construct the tangent to. The new tangent line is now $A B$.

After seeing this, a student asked how we know that this is in fact the tangent line. Or, how do we know that $\angle B O M$ is a right angle?

Commentary

Mathematical Focus 1: Isosceles Triangles

Triangles with a pair of congruent sides, or isosceles triangles, also have a pair of congruent angles.

Here, the two red triangles are both isosceles because all the radia of a circle are congruent. This means that $\angle O B A \cong \angle M O B$ and $\angle M B A \cong \angle M A B$.

Let α be the length of $\angle O B A$ and β be the length of $\angle M B A$. All triangles have 180°. Thus, if we look at $\triangle O B A$,

$$
\begin{gathered}
2 \cdot \alpha+2 \cdot \beta=180^{\circ} \\
\Rightarrow \\
\alpha+\beta=90^{\circ}
\end{gathered}
$$

This is exactly the reason why an inscribed angle which spans a circle's diameter is a right angle.

Mathematical Focus 2: Inscribed Angle in of a Circle

If an inscribed angle in a circle spans the diameter of that circle, that angle will be a right angle. Conversely, given a right angle, any two points, A and B, on the two different rays combined with the vertex, V will all be on a circle with a diameter $A B$. See the illustration below:

