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Prompt 

A student teacher in a course titled Advanced Algebra/Trigonometry presented 
several examples of solving systems of three equations in three unknowns 
algebraically using the method of elimination (linear combinations). She started 
another example and had written the following 

3x + 5y ! 6z = !3

5x + y ! 2z = 5
 

when a student asked, “What if you only have two equations?”  

 Commentary 

The problem seems centered on knowing necessary and sufficient conditions for 
unique solutions to systems of linear equations. Connections can be made to 
linear algebra through matrix representations. The foci build from systems of 
equations in two variables to systems of equations in three variables, and 
examine why three equations are necessary to produce a unique solution to a 
system of equations in three variables. In general, a system of n linear equations 
in m unknowns has solutions in a space of dimension n - m. The foci use physical 
models, symbolic representations, and graphical representations to examine 
systems of linear equations with unique solutions, infinite solutions, and no 
solutions.  

Mathematical Foci 

Mathematical Focus 1  
In cases for which the solutions are non-negative values, a length model can 
illustrate necessary conditions for determining unique solutions to systems of 
linear equations in two and three variables. 

Consider the following example: 



Two ropes have different lengths, and the sum of their lengths is 10 meters.  To 
measure the length of a 46-meter bamboo rod requires 3 lengths of the first rope 
and 7 lengths of the second rope.  Determine the length of each rope. 

Letting x represent the length of the first rope and y the length of the second 
rope, the sum of the lengths of the rope can be expressed symbolically as 

! 

x + y =10 . Many combinations of values for x and y satisfy this equation.  

A second equation is needed to determine a unique value for the length of each 
rope. Since measuring a 46-meter bamboo rod requires 3 lengths of the first rope 
and 7 lengths of the second rope, a relationship between the lengths of the first 
and second rope can be expressed symbolically as 

! 

3x + 7y = 46 .  

Using length models to represent the equations 

! 

x + y =10  and 

! 

3x + 7y = 46: 

 
x+y

10m

   

Because the sum of one length of each rope is 10m, the sum of three lengths of 
each rope would be 30m. This relationship could be expressed symbolically with 
the equivalent equations 

! 

x + y =10  and 

! 

3x + 3y = 30. Using length models to 
represent the equations 

! 

x + y =10  and 

! 

3x + 3y = 30: 

x+y

10m

   
3x+3y

30m

 

Since 

! 

3x + 3y = 30 is equivalent to 

! 

x + y =10 , we can express the lengths of each 
rope with the system of equations 

! 

3x + 3y = 30 and 

! 

3x + 7y = 46 . Using length 
models to represent the equations 

! 

3x + 3y = 30 and 

! 

3x + 7y = 46: 

3x+7y

3x+3y

    

46m

30m

 

By inspection, four lengths of the second rope must equal 16 meters, and 
therefore one length of the second rope is 4 meters. Expressed symbolically: 



! 

3x + 7y " 3x " 3y = 46 " 30

4y =16

y = 4

 

Hence, a unique length for the first rope exists, namely 6 meters.  

In the same way, a system of two linear equations in three variables will not have 
a unique solution. 

Mathematical Focus 2 
Two different methods for solving a type of problem (e.g., two different matrix 
methods for solving a systems of m equations in m unknowns) might not be 
equally useful in concluding the absence of a solution for a related type of 
problem (e.g., solving a system of m equations in n unknowns where m≠n). 

Systems of linear equations are often solved by matrix methods. One technique 
involves multiplying the inverse of the coefficient matrix and the matrix of 
constants, in that order. In the case of a system of two equations with three 
unknowns, the 2x3 coefficient matrix is not a square matrix. Thus the coefficient 
matrix does not have an inverse and a solution by this method is not possible.  
However, that does not necessarily mean that no solution exists. 

Solving systems of linear equations may also be accomplished by performing 
Gaussian elimination on the augmented matrix of coefficients and constants. 
Consider the general case of a system of two equations in three variables: 

! 

a
1
x + b

1
y + c

1
z = k

1

a
2
x + b

2
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2
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Performing Gaussian elimination on the augmented matrix of coefficients and 
constants gives the augmented matrix: 

! 

1 0 r
1
z s

1

0 1 r
2
z s

2

" 
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! 
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2
,s
1
,and s

2
 are constants. 

The augmented matrix represents an equivalent system of two equations in three 
variables: 

! 

x + 0y + r
1
z = s

1

0x + y + r
2
z = s

2

 or 
x = s

1
! r

1
z

y = s
2
! r

2
z

 

These equations indicate that, although the values of x and y depend on the value 
of z, the value of z is arbitrary.  Hence, a system of two equations in three 
variables has no unique solution. 

Mathematical Focus 3  



Existence or nonexistence of solutions to systems of linear equations arises in 
multiple representations of those systems. 

A graphical representation of the points whose coordinates satisfy a linear 
equation in two variables is a line.  A graphical representation of the points whose 
coordinates satisfy a linear equation in three variables is a plane. A graphical 
representation of the solution of a system of two or three linear equations in three 
variables would be the intersection of the two or three planes representing the 
solutions of each of the three equations. 

Two planes will either be parallel or intersecting, as illustrated in figures 1 and 2.  

   

 Figure 1: Two parallel planes Figure 2: Two intersecting planes 

Either two planes are parallel, as shown in Figure 1, and the system of two 
equations has no solution, or the planes intersect in a line, as shown in figure 2, 
and the system has infinitely many solutions, each of which lies on the line of 
intersection. Without a third plane to intersect that line of intersection, there is 
no unique point of intersection. Thus, a system of two equations in three 
unknowns cannot have a unique solution. 

Three planes will either be parallel or can intersect in several ways, as illustrated 
in figures 3 through 7.  

   

 Figure 3: Three parallel planes Figure 4: Three planes,  

  two of which are parallel 



   

 Figure 5: Three planes intersecting Figure 6: Three planes intersecting  

 pairwise in three parallel lines in a line  

 

Figure 7: Three planes intersecting in a point 

Thus a system of three linear equations in three variables may have no solutions, 
as represented in figures 3, 4, and 5. The system may have infinitely many 
solutions as represented in figure 6, or the system may have a unique solution as 
represented in figure 7.  


