
MAC-CPTM Situations Project 
Situation 10: Simultaneous Equations 

Revised 04/13/06 – Dennis Hembree and Erik Tillema 
  
Prompt 
  
A student teacher in a course titled Advanced Algebra/Trigonometry presented several 
examples of solving systems of three equations in three unknowns algebraically using the 
method of elimination (linear combinations). She started another example and had written 
the following 
  

 
  
when a student asked, “What if you only have two equations?” 
  
  
Commentary 
From this prompt, we will explore three mathematical foci. The first and second foci 
grow out of thinking of x, y, and z as unknown quantities. The third focus relies on a 
graphical approach in which x, y, and z are variables and the solution set is the set of all 
possible values that satisfy a particular equation. In this case, the solution set is 
represented as a point or line of intersection planes in three space.  The method of 
elimination works in both settings, but the reasoning involved differs depending on 
whether one considers x, y, and z to be unknowns or variables. The approach that focuses 
on x, y, and z as unknown quantities might arise in situations that relate three as yet 
unmeasured quantities while the functional interpretation might arise in a situation in 
which x, y, and z vary over a specified domain. It is our belief that having algebraic 
notation grow out of mathematical examples in quantitative contexts helps students 
develop ideas about quantitative equivalence, which are central to understanding the 
method of elimination. 

In these foci, we use the familiarity of systems of two equations in two unknowns to 
generalize to systems of three equations in three unknowns, and examine why a third 
equation is necessary in order to produce a unique solution. In general, a system of n 
linear equations in m unknowns has solutions in a space of dimension n - m.  In any 
discussion of systems of linear equations, there is a possibility that the equations are 
linearly dependent. Throughout the following discussions we do not consider cases of 
linearly dependent equations, though we believe that secondary teachers of mathematics 
should be familiar with linear independence and dependence and how these ideas might 
manifest themselves in each focus.  

 
 



Mathematical Foci 
Mathematical Focus 1 
Linear equations. 
Linear equations in two variables 
Any linear combination of two equations in two unknowns produces a new equation.  The 
solution of the original system, if one exists, is also a solution for the new equation. A 
full algebraic proof of this statement is given in Appendix A. We start by giving an 
example of a situation in two unknowns and then look at a situation in three unknowns. 
The example is intended to give an intuitive sense for why solutions of equations are 
invariant under linear transformations. The following example is similar to examples 
found in the ancient Chinese text Jiu Zhang Suanshu (JZSS) or The Nine Chapters of the 
Mathematical Arts and many early Babylonian mathematical texts.  

Suppose that I have two lengths of rope.  I know that the sum of the two lengths of rope 
is 10 meters.  Further, I know that to measure the length of a 46-meter bamboo rod 
requires 3 lengths of the first rope and 7 lengths of the second rope.  Can I find the 
lengths of each rope? 

This example in two unknowns suggests why having only one equation in two unknowns 
would be insufficient for a unique solution. For instance, letting x represent the length of 
the first rope and y the length of the second rope, we see that x + y =10.  However, the 
length of each rope remains indeterminate.   

The second equation (3x + 7y = 46) is essential in order to determine a unique solution 
for the lengths of rope. In order to conceive of the method of elimination, it is necessary 
to move away from a literal interpretation of the situation and imagine a new situation 
that helps to resolve the problem.  In order to do this, one can think of making an 
equivalent equation in a variety of ways.  For example, one can multiply 3 times the sum 
of the length of the ropes.  Doing so produces an equivalent equation, 3(x + y) = 3*10 or 
an equation which we know must hold true if the sum of the lengths of the rope is 10 m. 
Notice that there are two different ways to refer to the measure of the same quantity, x+y 
and 10 m, as demonstrated in the diagram below. Therefore, multiplying the measure of 
the quantity by 3 implies the need to multiply both ways of referring to the quantity by 3 
to preserve the equivalence. Below is a diagram to illustrate the above statements. 

x+y

10m

 

 
3(x+y)

30m

                                     
3x+3y

30m

 
 



Now it is possible to compare the new equation (3x+3y = 10) and the second equation 
(3x + 7y = 46).  Having this insight may result from thinking about making an additive 
comparison of the two resulting lengths. To make the comparison, it is useful to arrange 
the diagram of the situation as follows, so as to motivate the algebraic notation  

3x+7y

3x+3y

    

46m

30m

 
From the diagram, one might notice that the two “left over” lengths are 4y and 16m, 
giving 4y=16m and y = 4m.  

As a final note, negative values for unknowns can arise in situations where the unknowns 
represent an amount of money someone owes, an unknown integer, or measurements of 
temperature.     

Linear equations in three unknowns 

In more advanced situations, like the one presented in the prompt, algebraic symbolism 
serves to alleviate some of the difficulty of representing more complicated quantitative 
situations.  The method of elimination in three unknown quantities relies on reducing a 
situation to two equations in two unknowns and therefore is a generalization of the 
method shown above.  When starting with only two equations in three unknowns, it is 
possible to only generate one new equation in two unknowns and therefore the solution 
remains indeterminate (as in the rope example when it was not possible to uniquely 
determine the length of each rope given only one equation).  Beginning with three 
unknown length quantities and three conditions on their relatedness, it is possible to 
produce two equations in two unknowns with appropriate linear combinations of the three 
equations.  

Below is an algebraic representation of this process that grows out of modeling the 
following quantitative situation:  Suppose there are three lengths of rope and the sum of 
their lengths is 20 m.  It takes 3 lengths of the first rope, 2 lengths of the second rope, and 
2 lengths of the third rope to measure a 55 m bamboo pole.  Further, we know that it 
takes 2 lengths of the first rope, 1 length of the second rope, and 3 lengths of the third 
rope to measure a 42 m bamboo pole.  Find the lengths of each rope. 

Letting x represent the length of the first rope, y represent the length of the second rope, 
and z represent the length of the third rope we get the following equations: 

x + y + z = 20; 3x + 2y + 2z = 55; 2x + y + 3z = 42.   

Selecting the first and second equation, creating a new equation, and additively 
comparing the two equations yields:  y + z = 5 (which can be interpreted as the sum of 
the lengths of the second and third rope is 5 m). 

Selecting the first and third equation, creating a new equation, and additively comparing 
the two equations yields: -y + z = 2 (which can be interpreted as the difference of the 
lengths of the second and third rope is 2 m).  Solving this system as in the case of two 
equations and two unknowns we get that x = 15 m, y = 3/2 m, and z = 7/2 m. 



 
Mathematical Focus 2 
  
Matrices. 
  
Systems of linear equations are often solved by matrix methods, either by performing 
Gaussian elimination on the augmented matrix of coefficients and constants, or by 
multiplying the inverse of the coefficient matrix with the matrix of constants. In the case 
of a two by three system of equations, the coefficient matrix is not a square matrix. Thus 
the coefficient matrix does not have an inverse and the latter method is not possible. 
 
When Gaussian elimination is performed on the augmented matrix from a three by three 
system  
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one expects the result to be  
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However, with a system of two equations and three unknowns, unless the equations 
represent parallel planes, Gaussian elimination gives 
 

! 

1 0 r
1
z s

1

0 1 r
2
z s

2

" 

# 
$ 

% 

& 
' , where 

! 

r
1
,r
2
,s
1
,and s

2
 are constants resulting from matrix manipulations. 

 
Thus the original two by three system is equivalent to the system 
 

! 

x = s
1
" r

1
z

y = s
2
" r

2
z
 

 
Clearly this system has infinitely many solutions, since any chosen value of z results in 
solutions values for x and y. 



Mathematical Focus 3 
  
Points, Lines, and Planes. 
  
The graph of a linear equation in three variables is a plane. The solution(s) for a system 
of linear equations in three variables are points in the intersections of their graphs. Either 
two planes are parallel, as shown in Figure 1, and the system of two equations has no 
solution, or the planes intersect in a line, as shown in figure 2, and the system has 
infinitely many solutions, each of which lies on this line of intersection. 
 

Figure 1: Two parallel planes    Figure 2: Two intersecting planes 
 
 
The solution(s) of a system of three linear equations in three variables may be 
represented by the intersections of three planes. Three planes may intersect in a variety of 
ways, as illustrated in Figures 3 through 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Three parallel planes    Figure 4: Three planes, two of which are parallel 
 
 
 
 
 
 

 
 
 
 

 
 

 

  



 
 
 
 
 
 
 
 
 
 

 
Figure 5: Three planes intersecting pair wise in three   Figure 6: Three planes intersecting in a line 
parallel lines  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Three planes intersecting in a point 
 
Thus a system of three linear equations in three variables may have no solutions, as in 
Figures 3, 4, and 5. The system may have infinitely many solutions as in Figure 6, or the 
system may have a unique solution as in Figure 7.  
 
For the original prompt a geometric/graphical focus illustrates that, given only two 
equations in three unknowns, if the graphs intersect, that intersection is a line. There are 
infinitely many points on this line, each of which satisfies the pair of equations 
simultaneously. Thus, a system of two equations in three unknowns cannot have a unique 
solution. A third plane and thus a third linear equation are needed to produce a unique 
solution as in Figure 7.   
 
 
 
 

 

  



Appendix A 
 

Any linear combination of two equations in two unknowns produces a new equation. The 
solution of the original system, if one exists, is also a solution for the new equation.  
 
Proof:  

Given the system  
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The ordered pair 
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The method of linear combinations—sometimes called the addition method or the 
elimination method—“works” since appropriate choices of 
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 after simplification. Based on the above proof, the unique 

solution to either one of these results must be the solution value of the corresponding 
variable in the original system. 
 
In practice then, if we have a system such as  
 

! 

2x " y = "3

x + 3y = 16
 

 
and we use a linear combination of the two equations to eliminate y and arrive at the 
result 

! 

x = 1, it must be true that the solution set for this new equation contains the 
solution set of the original system. In other words, for the original system, x is 1 and the 
value of y is as yet unknown, but easily found by substitution. If x and y are considered as 
variables, we might consider these results in a graphical context. We might say that when 
we eliminate y, we have produced a new linear equation x = 1 that passes through, or 
contains, the point of intersection of the two original lines. 
 
Linear equations in three variables 

Any linear combination of two equations in three variables produces a new equation. A 
solution of the original system, if any exist, is also a solution of the new equation. A 
proof for this statement is simply an extension of the one given above. In the three-
variable case, however, a linear combination of two of the equations of the system that 
eliminates one of the variables typically results in an equation in two variables. This 
resulting equation has infinitely many solutions. Each of these solutions is also a solution 
of the two-equation system for an appropriate value of the third variable. 



 

In practice, for a system such as 

 

! 

x + y + z = 6

x + y " z = 0

2x + y " z = 1

 

 

we might use the first two equations to eliminate z and arrive at the equation 

! 

x + y = 3. In 
variable terms, this new equation represents a plane perpendicular to the x-y-plane that 
contains the solution (passes through the intersection of) the three original equations.  

Similarly using the first and third equations to arrive at 

! 

3x + 2y = 7 again produces a new 
plane perpendicular to the x-y-plane that contains the solution (passes through the 
intersection of) the three original equations.  

Using the two new equations 

! 

x + y = 3 and 

! 

3x + 2y = 7 and eliminating y results in the 
equation 

! 

x = 1, which in variable terms represents a line perpendicular to the x-y-plane 
that contains the solution (passes through the intersection of) the three original equations. 

 

Values of y and z may be found successively by substitution or by repeating a process 
similar to the one used to find x.  
 


