Situation 38: Irrational Length
 Prepared at Penn State
 Mid-Atlantic Center for Mathematics Teaching and Learning
 Date last revised: July 16, 2005 - Started by: Jeanne Shimizu

Prompt

A secondary pre-service teacher was given the following task to do during an interview:

Given: square $A B C D$.
Construct a square whose area is half the area of square ABCD.
(Note: The pre-service teacher was not given a drawing or any dimensions for ABCD.)

The student chose the dimensions of ABCD to be 1 unit by 1 unit and approached the problem in two ways.

Method 1: Reasoning with a figure She divided ABCD into smaller squares as shown in Figure 1a and noted each small square has area $\frac{1}{4}$. Sketching a new square as in Figure 1b, she claimed a $\frac{3}{4} X \frac{3}{4}$ square has area $\frac{9}{16}$. She concluded that the square she wants (sketched in Figure 1c) has a side length somewhere between one-half and three-fourths.

(a)

$\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}$
(b)

$? \times ?=\frac{1}{2}$
(c)

Figure 1.

Method 2: Reasoning from a formula
Assuming implicitly that the area of given square $A B C D$ is 1 square unit, she noted that the desired area of the new square is one-half square unit. Using a formula for the area of a square, she produced $s^{2}=\frac{1}{2}$ and then $s=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
After a long pause, she pointed to $\frac{\sqrt{2}}{2}$ and said, "I don't know how long that is. So I can't draw the square."

Mathematical Foci

Mathematical Focus 1

A numerical approximation for $\frac{\sqrt{2}}{2}$ could be obtained using a calculator or by recalling that $\sqrt{2} \approx 1.414$. So, $\frac{\sqrt{2}}{2} \approx 0.707$.

Measuring approximating 0.707 units to create the square would be easy in some cases (e.g., if the length of a side of ABCD were 1 meter and the length of a side of the new square would be 707 millimeters).

Mathematical Focus 2

A segment of length, $\frac{\sqrt{2}}{2}$, could be found geometrically. The diagonals of a 1X1 square have length, $\sqrt{2}$. By bisecting a diagonal, we obtain a segment of length, $\frac{\sqrt{2}}{2}$. (See segment $D Q$ in Figure 2.) Using segment $D Q$ we may construct a square whose area is one-half that of square ABCD. (See DSTU in Figure 2.)

Figure 2.

Mathematical Focus 3

A segment of length $\frac{\sqrt{2}}{2}$ can be found using similar triangles.
The diagonals of a 1 X 1 square have length $\sqrt{2}$. By connecting the midpoints of segments $A B$ and $A D$ (points X and Y, respectively), we construct a pair of similar triangles, $\triangle A B D$ and $\triangle A X Y$. See Figure 3. Because $\triangle A B D \sim \triangle A X Y$ and $A X=A Y=\frac{1}{2}, X Y=\frac{1}{2} B D=\frac{1}{2} \sqrt{2}=\frac{\sqrt{2}}{2}$.

$$
\begin{aligned}
& \mathrm{BD}=\sqrt{2} \\
& \mathrm{XY}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

Figure 3.
By analogy, segments $X W, W Z$, and $Z Y$ have lengths $\frac{\sqrt{2}}{2}$. Since $\triangle X A Y, \triangle X B W$, $\triangle W C Z$, and $\triangle Z D Y$ are isosceles right triangles, the interior angles of $Y X W Z$ are
right angles. So, YXWZ is a square whose area, $\left(\frac{\sqrt{2}}{2}\right)^{2}=\frac{1}{2}$, is one-half that of ABCD.

Mathematical Focus 4

An approximation of $\sqrt{2}$ can be found by using the square root algorithm:

1. ${ }_{\text {1. }} 4.00 \quad 1 \quad 4 \ldots$		
1		
	100	0
		96
281		400
		$\underline{21}$
2824		11900
		11296

So, $\frac{\sqrt{2}}{2} \approx 0.707$ is the length of the sides of the desired square.

Mathematical Focus 5

A numerical approximation for $\frac{\sqrt{2}}{2}$ can be found by using Newton's Method.

$$
\begin{gathered}
\text { Newton's Method } \\
x_{0}=\text { an initial guess } \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \text { where } n=1,2,3, \ldots
\end{gathered}
$$

Because we want to approximate the dimensions of a square whose area is $\frac{1}{2}$ square units, we want to approximate the positive real root of $x^{2}-\frac{1}{2}=0$.
We use $f(x)=x^{2}-\frac{1}{2}$ and $f^{\prime}(x)=2 x$ to obtain $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}{ }^{2}-\frac{1}{2}}{2 x_{n}}$

We know that our desired solution is between 0.5 and 0.75 (based on her work in Figure 1). These values are reasonable initial approximations. Figure 4 is a screen shot of ten successive approximations generated on Excel using the formulas shown in Figure 5.

n	$\mathrm{x}(\mathrm{n})$	n	$\mathrm{x}(\mathrm{n})$	
	n	0.5	0	0.75
0	0.75	1	0.70833333	
1	0.70833333	2	0.70710784	
3	0.70710784	3	0.70710678	
4	0.70710678	4	0.70710678	
5	0.70710678	5	0.70710678	
6	0.70710678	6	0.70710678	
7	0.70710678	7	0.70710678	
8	0.70710678	8	0.70710678	
9	0.70710678	9	0.70710678	
10	0.70710678	10	0.70710678	

Figure 4.

n	$x(n)$	n	$x(n)$
0	0.5	0	0.75
= $\mathrm{A} 7+1$	$=\mathrm{B} 7-\left((\mathrm{B} 7)^{\wedge} 2-0.5\right) /(2 * B 7)$	= $\mathrm{D} 7+1$	$=E 7-\left(\right.$ E7) $\left.{ }^{\text {人 }} 2-0.5\right) /(2 * E 7)$
= $\mathrm{A} 8+1$	$=\mathrm{B} 8-((\mathrm{B} 8) \wedge 2-0.5) /(2 * \mathrm{~B} 8)$	= $\mathrm{D} 8+1$	$=E 8-((E 8) \wedge 2-0.5) /(2 * E 8)$
= ${ }^{\text {9 }}$ + +1	$=B 9-((B 9) \wedge 2-0.5) /(2 * B 9)$	= D9 +1	
= A10+1	= B10-($\left.(\text { B10 })^{\wedge} 2-0.5\right) /(2 * B 10)$	= D10 1	$=E 10-((E 10) \wedge 2-0.5) /(2 * E 10)$
= A11+1	$=\mathrm{B} 11-\left((\mathrm{B} 11)^{\wedge} 2-0.5\right) /\left(2^{*} \mathrm{~B} 11\right)$	= D11+1	$=E 11-((E 11) \wedge 2-0.5) /(2 * E 11)$
= A $12+1$	$=\mathrm{B} 12-((\mathrm{B} 12) \wedge 2-0.5) /\left(2^{*} \mathrm{~B} 12\right)$	=D12+1	$=E 12-((E 12) \wedge 2-0.5) /(2 * E 12)$
=A13+1	$=\mathrm{B} 13-((\mathrm{B} 13) \wedge 2-0.5) /\left(2^{*} \mathrm{~B} 13\right)$	= D13+1	$=E 13-((E 13) \wedge 2-0.5) /(2 * E 13)$
=A14+1	$=\mathrm{B} 14-((\mathrm{B} 14) \wedge 2-0.5) /(2 * B 14)$	=D14+1	$=E 14-((E 14) \wedge 2-0.5) /(2 * E 14)$
=A15+1	$=\mathrm{B} 15-\left((\mathrm{B} 15)^{\wedge} 2-0.5\right) /(2 * B 15)$	= D15+1	$=E 15-((E 15) \wedge 2-0.5) /(2 * E 15)$
=A16+1	$=\mathrm{B} 16-((\mathrm{B} 16) \wedge 2-0.5) /\left(2^{*} \mathrm{~B} 16\right)$	= D16+1	=E16-(${ }^{\text {E16 }}$)^2-0.5)/(2 *E16)

Figure 5.
There are other ways to generate these values. For example, we could use a Tl 92 calculator in sequence mode to generate a table using

$$
\begin{aligned}
& \text { u1=u1(n-1)-((u1(n-1))^2-.5)/(2*u1(n-1)) } \\
& \text { ui1 }=.5 \\
& \text { u2=u2(n-1)-((u2(n-1))^2-.5)/(2*u2(n-1)) } \\
& \text { ui2=.75 } \\
& \text { and } \\
& \text { tblStart } 1 \\
& \Delta \text { tbl } \quad 1
\end{aligned}
$$

Connection:
Students may find that The Math Forum's Dr. Math has a webpage devoted to finding square roots without a calculator. Dr. Math describes an algorithm in which the reader is instructed to follow a sequence of steps loosely described as:

1. Guess
2. Divide
3. Average

Continue steps 2 and 3 until the desired degree of accuracy is reached.
For example, to approximate the value of $\sqrt{2}$, we would as follows:

1. Guess. Let us use 1.
2. Divide. Since we want to find $\sqrt{2}$, we would compute $2 \div 1=2$.
3. Average. For this step we compute the arithmetic average of 2 and 1.

$$
\frac{2+1}{2}=1.5
$$

4. Divide. $2 \div 1.5 \approx 1.333$
5. Average. $\frac{1.5+1.333}{2}=1.4165$
6. Divide. $2 \div 1.4165 \approx 1.4119$
7. Average. $\frac{1.4165+1.4119}{2} \approx 1.4142$
8. Divide. $2 \div 1.4142 \approx 1.4122$
9. Average. $\frac{1.4142+1.4122}{2} \approx 1.4132$

So, $\sqrt{2} \approx 1.41$ This process can be described symbolically as follows:
$T(n+1)=\frac{\frac{2}{T(n)}+T(n)}{2}$, where $T(0)=$ initial guess
The mathematical basis for this recursive algorithm is Newton's Method applied using $f(x)=x^{2}-2$ for which we are interested in finding an approximation for a positive root.

$$
\begin{aligned}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} & =x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}} \\
& =\frac{2 x_{n}^{2}-\left(x_{n}^{2}-2\right)}{2 x_{n}}=\frac{x_{n}^{2}+2}{2 x_{n}}=\frac{x_{n}+\frac{2}{x_{n}}}{2}
\end{aligned}
$$

References

Math Forum's Dr. Math, "Square Roots Without a Calculator"

 http://mathforum.org/dr.math/faq/faq.sqrt.by.hand.html , July 13, 2005Grzesina, A., A geometric view of the square root algorithm, http://mathcentral.uregina.ca/RR/database/RR.09.95/grzesina1.html , July 15, 2005
Homeschool Math, Why the square root algorithm works - the logic behind it, http://www.homeschoolmath.net/other_topics/sqr-algorithm-why-works.php , July 15, 2005
Anton, H. Calculus with Analytic Geometry, $4^{\text {th }}$ ed. (1992) Wiley \& Sons, Inc., New York

> END OF SITUATION DISCUSSION - END OF SITUATION DISCUSSION

