Situation 40: Powers
 Prepared at Penn State
 Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 2005 - Tracy, Jana, Christa, Jim

Prompt

During an Algebra I lesson on exponents, the teacher asked the students to calculate positive integer powers of 2. A student asks the teacher, "We've found 2^{2} and 2^{3}. What about $2^{2.5}$?"

Commentary

Mathematical Foci

Mathematical Focus 1

The value for $2^{2.5}$ can be estimated based on the values for 2^{2} and 2^{3}. It is necessary to understand that the value for $2^{2.5}$ will not be halfway between 2^{2} and 2^{3}. Due to the nature of exponential growth, the value for $2^{2.5}$ will be closer to 2^{2} than it will be to 2^{3}. A visual representation could be helpful with this approach, that is, utilizing blocks as units to estimate the relationship between the exponent and the height of the blocks.

Mathematical Focus 2

The value for $2^{2.5}$ can be explored using properties of exponents. The expression $2^{2.5}$ can be rewritten as $2^{2} 2^{0.5}=2^{2} 2^{1 / 2}$. Two raised to the exponent of one-half is equivalent to the square root of $2.2^{2} \cdot 2^{0.5}=2^{2} \sqrt{2} \approx 4(1.414)=5.656$. So $2^{2.5} \approx 5.656$.

Mathematical Focus 3

The value for $2^{2.5}$ can be explored using properties of rational exponents. The expression $2^{2.5}$ can be rewritten as $2^{5 / 2}$. This quantity can be represented as $\left(2^{5}\right)^{1 / 2}=\sqrt{2^{5}}=\sqrt{32} \approx 5.656$ or $\left(2^{\frac{1}{2}}\right)^{5}=(\sqrt{2})^{5} \approx 1.414^{5} \approx 5.656$.

Mathematical Focus 4

One possible approach to finding the value of $2^{2.5}$ is to examine the graph of the function $f(x)=2^{x}$. One can estimate from the graph the value of the function at $x=2.5$ in at least two different ways. First, one can look at the intersection of the function graph with the vertical line $x=2.5$ in the following graph to see $f(x) \approx 5.5$.

Second, one can trace along the function graph to obtain $f(x) \approx 5.656$ when $x=2.5$.

$-y=2^{x}$
$2.5=2.5$

