Situation 41: Square Roots

Prepared at Penn State
 Mid-Atlantic Center for Mathematics Teaching and Learning

14 July 2005 - Tracy, Jana, Christa, Jim

Edited at University of Georgia July 24, 2006 - Sarah Donaldson

Prompt

A teacher asks her students to sketch the graph of $f(x)=\sqrt{-x}$. A student responds, "That's impossible! You can't take the square root of a negative number!"

Commentary

The student's comment communicates a common misunderstanding that "- x " always represents a negative number, rather than signifying "opposite x." Teachers must understand this notion of opposites, as well as having a deep understanding of functions: their graphs, reflections, and domains.

Focus 1 addresses the issue of domain, as well as the notion of "- x " being "opposite x " rather than always a negative number. In Focus 2, the graph of $f(x)=\sqrt{-x}$ is examined by considering it as a horizontal reflection of $g(x)=\sqrt{x}$. Focus 3 presents a numerical approach: create a table of values. Though not a proof, it provides evidence that $f(x)=\sqrt{-x}$ does, in fact, exist, and that its domain is $x \leq 0$.

Mathematical Foci

Mathematical Focus 1

The domain of the square root function $f(x)=\sqrt{x}$ is all nonnegative real numbers ($D: x \geq 0$). To find the domain of any square root function, then, one must consider x-values for which the radicand is greater than or equal to zero. For example, if the function were $f(x)=\sqrt{x+2}$, the domain can be found algebraically:

$$
\begin{aligned}
& x+2 \geq 0 \\
& x \geq-2
\end{aligned}
$$

In the case of $f(x)=\sqrt{-x}$, an algebraic approach for finding the domain is to set $-x \geq 0$:

$$
\begin{aligned}
& -x \geq 0 \\
& x \leq 0
\end{aligned}
$$

In other words, the function $f(x)=\sqrt{-x}$ does exist and its domain is $x \leq 0$ (see graph in Focus 2).

Mathematical Focus 2

Using a transformation of the graph of the known function $g(x)=\sqrt{x}$, the less familiar function, $f(x)=\sqrt{-x}$, can be generated. This requires a look into translations of graphs of functions:

When the graph of $-h(x)$ is compared to the graph of $h(x)$, it can be seen that the two graphs are reflections of each other about the horizontal axis. This is because by graphing the opposite of $h(x)$, each point in the positive part of the range of $h(x)$ becomes negative, and each point in the negative part of the range of $h(x)$ becomes positive. Since zero has no opposite, $h(x)=0$ and $-h(x)=0$ are the same on both graphs.

Comparing the graphs of $h(x)$ and $h(-x)$ also reveals a reflection: this time the graphs are reflections of each other about the vertical axis. Rather than the range values being negated (as in $-h(x)$), the domain values are negated, resulting in a reflection of x-values about the vertical axis. Again, since zero has no opposite, $h(0)$ and $h(-0)$ are the same point.

Specifically, the graph of the function $f(x)=\sqrt{-x}$ is a reflection of the graph of $g(x)=\sqrt{x}$ about the vertical axis, as is shown in the following figure.

The graph illustrates that $f(x)=\sqrt{-x}$ does exist, and its domain appears to be x ≤ 0.

Mathematical Focus 3

The results from a numerical approach to $f(x)=\sqrt{-x}$ echo what has been examined algebraically and graphically. Below is a chart of values of $f(x)=\sqrt{-x}$ for various x-values:

x	$\sqrt{-x}$
-4	$\sqrt{-(-4)}=2$
-3	$\sqrt{-(-3)}=\sqrt{3}$
-2	$\sqrt{-(-2)}=\sqrt{2}$
-1	$\sqrt{-(-1)}=1$
0	$\sqrt{-0}=0$
1	$\sqrt{-1}=i$
2	(not a real number)
3	$\sqrt{-2} \quad$ (not a real \#)
4	$\sqrt{-3} \quad$ (not a real \#)

The results show that $f(x)=\sqrt{-x}$ exists, and suggest that its domain is $x \leq 0$.

