Situation 41: Square Roots

Prepared at Penn State Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 2005 – Tracy, Jana, Christa, Jim

Edited at University of Georgia July 5, 2006 – Sarah Donaldson

Prompt

A teacher asks her students to sketch the graph of $f(x) = \sqrt{-x}$. A student responds, "That's impossible! You can't take the square root of a negative number!"

Commentary

The student's comment communicates a common misunderstanding that "-x" always represents a negative number, rather than signifying "opposite x." Teachers must understand this notion of opposites, as well as having a deep understanding of functions: their graphs, reflections, and domains.

Focus 1 addresses the issue of domain, as well as the notion of "-*x*" being "opposite *x*" rather than always a negative number. In Focus 2, the graph of $f(x) = \sqrt{-x}$ is examined by considering it as a horizontal reflection of $g(x) = \sqrt{x}$. Focus 3 presents a numerical approach: create a table of values. Though not a proof, it provides evidence that $f(x) = \sqrt{-x}$ does, in fact, exist, and that its domain is $x \le 0$.

Mathematical Foci

Mathematical Focus 1

The domain of the square root function $f(x) = \sqrt{x}$ is all nonnegative real numbers (*D*: $x \ge 0$).

To find the domain of any square root function, then, one must consider *x*-values for which the radicand is greater than or equal to zero. For example, if the function were $f(x) = \sqrt{x+2}$, the domain can be found algebraically:

 $x + 2 \ge 0$ $x \ge -2$

In the case of $f(x) = \sqrt{-x}$, an algebraic approach for finding the domain is to set $-x \ge 0$:

 $-x \ge 0$ $x \le 0$

In other words, the function $f(x) = \sqrt{-x}$ does exist and its domain is $x \le 0$ (see graph in Focus 2).

Mathematical Focus 2

Use a transformation of the graph of the known function, $g(x) = \sqrt{x}$, in order to generate a graph of a less familiar function, $f(x) = \sqrt{-x}$. If the graph of $g(x) = \sqrt{x}$ is reflected about the vertical axis, the result is the graph of $f(x) = \sqrt{-x}$ as is shown in the following figure. It is important to recognize that the point (0, 0) is on both graphs.

Mathematical Focus 3

Verify that the function $f(x) = \sqrt{-x}$ makes sense by testing a few specific negative values and a few specific positive values for *x*. It might help to choose numbers whose absolute values are perfect squares, such as these shown on the following chart:

X	$\sqrt{-x}$
-4	$\sqrt{-(-4)} = 2$
4	$\sqrt{-4} = 2i$ (not a real number)
-1	$\sqrt{-(-1)} = 1$
1	$\sqrt{-1} = i$ (not a real number)
0	$\sqrt{-0} = 0$

The results for x-values -4, 4, -1, 1, and 0 suggest the function's domain contains all non-positive numbers.