Situation 41: Square Roots

Prepared at Penn State

Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 2005 - Tracy, Jana, Christa, Jim

Prompt

A teacher asks her students to sketch the graph of $f(x)=\sqrt{-x}$. A student responds, "That's impossible! You can't take the square root of a negative number!"

Commentary

Mathematical Foci

Mathematical Focus 1

The domain of the square root function is all nonnegative real numbers. To find the domain of $f(x)=\sqrt{-x}$, one may algebraically solve the inequality $-x \geq 0$.

Mathematical Focus 2

Use a transformation of the graph of the known function, $g(x)=\sqrt{x}$, in order to generate a graph of a less familiar function, $f(x)=\sqrt{-x}$. If the graph of $g(x)=\sqrt{x}$ is reflected about the vertical axis, the result is the graph of $f(x)=\sqrt{-x}$ as is shown in the following figure. It is important to recognize that the point $(0,0)$ is on both graphs.

Mathematical Focus 3

Verify that the function $f(x)=\sqrt{-x}$ makes sense by testing a few specific negative values and a few specific positive values for x. It might help to choose numbers whose absolute values are perfect squares, such as these shown on the following chart:

X	$\sqrt{-x}$
-4	$\sqrt{-(-4)}=2$
4	$\sqrt{-4}$ is not a real number
-1	$\sqrt{-(-1)}=1$
1	$\sqrt{-1}$ is not a real number
0	$\sqrt{-0}=0$

The results for x-values $-4,4,-1,1$, and 0 suggest the function's domain contains all non-positive numbers.

