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Prompt 

On the first day of class, preservice middle school teachers were asked to evaluate 
2

0
, 
0

0
, and 

0

2
 and to explain their answers. There was some disagreement among 

their answers for 
0

0
 (potentially 0, 1, undefined, and impossible) and quite a bit 

of disagreement among their explanations:  
• Because any number over 0 is undefined; 
• Because you cannot divide by 0; 
• Because 0 cannot be in the denominator; 
• Because 0 divided by anything is 0; and 
• Because a number divided by itself is 1. 
 
 

Commentary 

The mathematical issue centers on the possible values that result when zero is the 
dividend, the divisor, or both the dividend and the divisor in the quotient. The 
value of such a quotient would be zero, undefined, or indeterminate. The foci use 
multiple contexts within and beyond mathematics to represent and illustrate 
these three possibilities. Connections are made to ratio, factor pairs, Cartesian 
product, area of rectangles, and the real projective line. 
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Mathematical Foci 

 

Mathematical Focus 1: 

 
An expression involving division can be viewed as a number, so an equation can 
be written that uses a variable to represent that number.  The number of 
solutions for equations that are equivalent to that equation indicate whether the 
expression has one value, is undefined, or is indeterminate. 

We can think of a rational number as being the solution to an equation.  If 
division expressions involving zero also represent rational numbers, we should 
have consistent results when we examine equations involving these expressions.  

To find the solution of the equation 
0

2
= x , we consider the equivalent statement 

2x = 0 , which yields the unique solution x = 0 .  To see the impossibility of a 
numerical value for a rational number with a 0 in the denominator, we consider 

the equation 
0

0
= x , and its potentially equivalent equation, 0x = 0 .  Because any 

value of x is a solution to this equation, there are infinitely many solutions; hence, 

no unique solution.  With the same assumption of a rational value, if 
2

0
= x , then 

0x = 2 . No real number x is a solution to this equation. 
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Mathematical Focus 2 

 
One can find the value of whole-number division expressions by finding either 
the number of objects in a group (a partitive view of division) or the number of 
groups (a quotitive view of division). 

In partitive division, we take a total number of objects and divide the 

objects equally among a number of groups.  A non-zero example would be 
12

3
, 

where we share 12 objects equally among 3 groups and ask how many objects 

would be in one group. Similarly, 
0

2
 can be thought of as 0 objects in 2 groups, 

which means 0 objects per 1 group.  Additionally, the expression 
0

0
 is a model for 

dividing 0 objects among 0 groups.  In other words,  “If 0 objects are shared by 0 
groups, how many objects are in 1 group?”  There is not enough information to 
answer this question. If the number of objects in a group is 3, or 7.2, or any size at 

all, 0 groups would have 0 objects.  Similarly, 
2

0
 is a model for the example: “If 2 

objects are shared by 0 groups, how many objects are in 1 group?” In this case the 
group size is undefined, because there are 0 groups.   

Using a quotative view of division, we interpret the expression, 
12

3
 as a 

model of splitting 12 objects into groups of 3 and asking how many groups can be 

made. So 
0

2
 can be thought of as splitting 0 objects in groups of 2, which means 0 

groups of size 2.  The expression 
0

0
 models the splitting 0 objects into groups of 

0, and asks how many groups can be made. Because there could be any number 

of groups, there is an infinite number of solutions.  Lastly, the expression 
2

0
 

models the splitting of 2 objects into groups of 0, and asking how many groups 
can be made. Regardless of how many groups of 0 we remove, no objects are 
removed. Therefore, the number of groups is undefined. 
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Mathematical Focus 3: 
 
The mathematical meaning of a/b (for real numbers a and b and sometimes, 
but not always, with b≠0) arises in several different mathematical settings, 
including: slope of a line, direct proportion, Cartesian product, factor pairs, and 
area of rectangles.  The meaning of a/b for real numbers a and b should be 
consistent within any one mathematical setting. 

There are mathematical situations in which ratios are necessary, and a 
quotient can be reinterpreted as a ratio.  For example, the slope of a line between 
two points in the Cartesian plane can be defined as the ratio of the change in the 
y-direction to the change in the x-direction, or as the rise divided by run. In the 
case of two coincident points, the change in the y-direction and the change in the 

x-direction are both 0, which means that the rise divided by run is 
0

0
. There are 

an infinite number of lines through two coincident points.  In the case of two 
points lying on the same vertical line whose y-coordinates differ by a, the change 
in the y direction will be a and the change in the x direction is 0. It might be 

tempting to claim that, because 
rise

run
 is 

a

0
, the slope of a vertical line is undefined. 

However, this claim is exactly what we are trying to show. 

The model for direct proportion, y = kx , suggests a family of lines through 
the origin. For y and non-zero x as the coordinates of points on a line given by 

y=kx, the ratio 
y

x
 equals k, which is constant.  If this ratio held for the 

coordinates of the origin, it would be 
0

0
= k .  However, no one value of k would 

make sense as the value of 
0

0
 because the origin is on every line represented by 

an equation of the form y = kx . Thinking about the equation y = kx  in terms of 

number relationships also leads to the conclusion that the value of 
0

0
 cannot be 

determined: if y = kx  and x=0, then y=0 and k can be any real number. It is 

important to note that the case where x=0 and y≠0, such as 
2

0
, it is difficult to 

explain via direct proportion; if y = kx , x=0 and y≠0 is an impossible 
circumstance. 

 A different mathematical context for looking at division involving zero is 
the Cartesian product.  A non-zero example is if 12 outfits can be made using 3 
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pairs of pants and some number of shirts, how many shirts are there? Similarly, if 
0 outfits can be made using 2 pairs of pants and some number of shirts, there 
must be 0 shirts.  If 0 outfits can be made using 0 pairs of pants and some 
number of shirts, the number of possibilities for the number of shirts is infinite.  
Lastly, how many shirts are there if there are two outfits and 0 pairs of pants? No 
possible number of shirts can be used to make 2 outfits if there are 0 pairs of 
pants.  

In the context of factor pairs, a division expression with an integral value 

represents an unknown factor of the dividend.  For 
12

3
, 3 and the quotient are a 

factor pair for 12.  In this expression, 12 can be written as the product of 3 and the 

quotient:   

! 

12 = 3" 4 .    For 
0

2
, 2 and the quotient are a factor pair for 0. Therefore, 

the quotient must be 0, because   

! 

0 " 2 = 0.  For 
0

0
, 0 is part of an infinite number 

of factor pairs for 0.  For 
2

0
, 0 is not part of any factor pair for 2, thus there is no 

solution for this factor pair.  

One side length of a rectangle is the quotient of the area of the rectangle 
and its other side length. Suppose we allow that rectangles can have side lengths 
of 0. If a rectangle has area 12 and height 3, what is its width?  It would be a 
width of 4. If a rectangle has area 0 and length 2, its width is 0.  If a rectangle has 
area 0 and height 0, what is its width?  Any width is possible.  If a rectangle has 
area 2 and height 0, what is its width? It is impossible for a rectangle to have area 
2 and height 0.   

Mathematical Focus 4: 
Contextual applications of division or of rates or ratios involving 0 illustrate 
when division by 0 yields an undefined or indeterminate form and when 
division of 0 by a non-zero real number yields 0. 

If Angela makes 3 free throws in 12 attempts, what is her rate?  If Angela makes 0 
free throws in 2 attempts, her rate is 0.  If Angela makes 0 free throws in 0 
attempts, her rate could be any of an infinite number of rates.  On the other hand, 
since it is not possible for Angela to make 2 free throws in 0 attempts, it is not 
possible to determine her rate.   

Determining the speed of an object over a given period of time is another rate 
context. If one goes 12 miles in 3 hours, how fast is one going? The answer is 4 
miles per hour. If one goes 0 miles in 2 hours, one is going 0 miles per hour. If 
one goes 0 miles in 0 hours, how fast is one going?  An infinite number of speeds 
are possible. If one goes 1 mile in 0 hours, how fast is one going?  This travel 
situation is an impossible setting.  [Note that there is a sense of infinite speed 
here.] 



Sitn 46 DivbyZero 070511.doc  Page 6 of 7 

Additionally, the idea of rate is prevalent when discussing the unit price, as when 
purchasing multiple quantities of an item in a store. If $12 buys 3 pounds of 
tomatoes, how much is 1 pound? If $0 buys 2 pounds of tomatoes, then 1 pound 
can be bought for $0. If $0 buys 0 pounds of tomatoes, there is an infinite 
number of possible costs for 1 pound. If $2 buys 0 pounds of tomatoes, it is not 
possible to determine the number of dollars needed to buy 1 pound. 

 

Mathematical Focus 5: 

 
Slopes of lines in two-dimensional Cartesian space map to real projective one-
space in such a way that confirms that the value of a/b when b=0 is undefined if 
a≠0 and indeterminate if a=0. 

In the Cartesian plane, consider the set of lines through the origin, and consider 
each line to be an equivalence class of points in the plane. 

Except when x = 0, the ratio of the coordinates of a point gives the slope of the 
line that is the equivalence class containing that point. The origin must be 
excluded because it would be in all equivalence classes, which is rather like saying 

that 
0

0
 would be the slope of any line through the origin. Note that the slope of a 

line through the origin is equal to the y-coordinate of the intersection of that line 
and the line x = 1 . This way, we can use slope to establish a one-to-one 
correspondence between the equivalence classes and the real numbers. Thus, the 
real numbers give us all possible slopes, except for the vertical line.   

When x = 0 , all the points in the equivalence class lie on the vertical line that is 
the y-axis.  (Again the origin must be excluded from this equivalence class.) The 
ratio of the coordinates is undefined, so the slope is undefined. As positively 
sloped lines approach vertical, their slopes approach ∞, suggesting the slope of 
the vertical line to be ∞. As negatively sloped lines approach vertical, their slopes 
approach –∞, suggesting the slope should instead be –∞. However, there is only 
one vertical line through the origin, so it cannot have two different slopes. To 
resolve this ambiguity, we can decide that ∞ and –∞ are the same “number” 
because they should represent the same slope. So now, if we think about all 
possible slopes, we have all real numbers and one more number, which we will 
call ∞. Imagine beginning with the extended real line, },{ !""#$ , and gluing 
together the points ∞ and –∞ so that they are the same point.  This is the real 
projective one-space, }{!"# . 
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Post-Commentary 

For situations involving division with zero, there are three types of forms: 0, 
undefined, indeterminate.  The indeterminate form has particular importance in 
a calculus setting.  Given a function that is continuous everywhere in its domain 
except for one value, say a, we can select that one functional value to make 
another function that is continuous everywhere in its domain. For all of its 
domain values except a, the new function would have the same values as the 

given function. For example, in the case of the function 
    

! 

f x( ) =
sin x

x
, the function 

is continuous for all real numbers except 0, for the functional value at x = 0 is the 

indeterminate form 0/0. The piecewise-defined function,

    

! 

f x( ) =

sin x

x
, x " 0

1, x = 0

# 

$ 
% 

& 
% 

 is 

continuous for all real numbers.  In this case, we used that fact that the limit of 

interest was one: 
    

! 

lim
x"0

sin x

x
=1.  However, in other cases, limits related to 0/0 do 

not have to be 1, or even an integer. For example, 

! 

lim
x"0

2 sin x

3x
=
2

3
.  These are but two 

examples that show that, depending on the function, we would find it useful to 
assign two different numerical values for a limit involving 0/0.  The very 
ambiguity of this form suggests the need for L'Hospital's rule.   

 


