
060914_SituationSquarerti-FinalDraft.doc  Page 1 of 7 

CAS Situation 5: Square root of i 
Prepared at Penn State 

Mid-Atlantic Center for Mathematics Teaching and Learning 
060914 – Heather Godine, Shiv Karunakaran, Evan McClintock 

 
Prompt 
Knowing that a CAS had commands such as cfactor and csolve, a teacher was curious 

about what would happen if she entered 

! 

i .  The result was 

! 

2

2
+

2

2
i .  Why would a 

CAS give a result like this?   
 
 
Commentary 
 
When using a CAS, students and teachers can encounter situations that cause them to 
question why the CAS may give a particular result. Symbolic verification and 
manipulation can be used to confirm results given by a CAS. Mathematical focus 1 

symbolically verifies 

! 

2

2
+

2

2
i  is a square root of 

! 

i , and mathematical focus 2 uses 

symbolic manipulation to determine all square roots of 

! 

i . Moreover, the CAS as a tool 
should be self-consistent in the results it produces, and mathematical focus 3 addresses 
how one can use the csolve command on a CAS to verify the tool’s consistency related to 

! 

i =
2

2
+

2

2
i. 

 
Mathematical foci 1, 2, and 3 account for the reasoning behind the symbolic work by 
confirming that the result makes sense.  However, none of these foci deals with how 

! 

i =
2

2
+

2

2
i can make sense within a larger system. To address the underlying 

mathematical logic relating to why 

! 

i =
2

2
+

2

2
i, mathematical foci 4, 5, and 6 utilize 

representations of complex numbers on the complex plane. Mathematical focus 4 
connects powers of 

! 

i  to points of the unit circle on the complex plane and their images 
under rotations, and mathematical focus 5 considers the powers of i as elements of cyclic 
groups. Mathematical focus 6 uses Euler’s formula to represent complex numbers in 
exponential and trigonometric form. 
 
Mathematical Foci 
 
Mathematical Focus 1 

Verifying that 

! 

2

2
+

2

2
i  is a square root of

! 

i . 

Using Symbolic Verification 
One way to verify that a complex number is a square root of another number is to square 
that complex number and verify that the square and the other number are equivalent. By 
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squaring the expression

! 

2

2
+

2

2
i , we can verify that 

! 

2

2
+

2

2
i  is a square root of

! 

i . It is 

useful to note that the symbolic manipulations needed to expand the expression 

! 

2

2
+

2

2
i

" 

# 
$ 

% 

& 
' 

2

will treat it as though it were an algebraic expression of the form 

! 

(a + b)
2  

from the real domain. 

Expanding

! 

2

2
+

2

2
i

" 

# 
$ 

% 

& 
' 

2

 gives 

! 

2

2
+

2

2
i

" 

# 
$ 

% 

& 
' 

2

=
2

2

" 

# 
$ 

% 

& 
' 

2

+ 2
1

2

" 

# 
$ 
% 

& 
' i +

2

2
i

" 

# 
$ 

% 

& 
' 

2

. 

Simplifying

! 

2

2

" 

# 
$ 

% 

& 
' 

2

+ 2
1

2

" 

# 
$ 
% 

& 
' i +

2

2
i

" 

# 
$ 

% 

& 
' 

2

gives 

! 

2

2
+

2

2
i

" 

# 
$ 

% 

& 
' 

2

=
1

2
+ i (

1

2
= i . 

Since 

! 

2

2
+

2

2
i

" 

# 
$ 

% 

& 
' 

2

= i , we conclude that a square root of 

! 

i  is equal to 

! 

2

2
+

2

2
i . 

 
 
Mathematical Focus 2 
Solving the equation 

! 

x
2

= i, where 

! 

x = a + bi  
Knowing that any complex number is of the form a+bi, where a and b are real numbers, 
we can determine square roots of 

! 

i  by solving the equation 

! 

a + bi( )
2

= i for 

! 

a  and 

! 

b. To 
solve the equation, first we expand 

! 

a + bi( )
2, and the equation becomes 

! 

a
2

+ 2abi " b
2

= i. 
Equating the real and complex parts of the equation, 

! 

a
2
" b

2
= 0  and 

! 

2ab =1. Therefore, 

! 

a = ±b and either 

! 

2b
2

=1 or 

! 

"2b
2

=1. However, since we know that both

! 

a  and 

! 

b are real 
and that 

! 

"2b
2

=1 has no real solutions, we only consider the equation 

! 

2b
2

=1. However, 
if ba != , then 1222

2
=!="!"="" bbbba , which is not possible, meaning that 

! 

a = "b  

is not possible, leaving 

! 

a = b as the only possibility. Solving 

! 

2b
2

=1 for 

! 

b gives 

! 

b =
2

2
 

and 

! 

b = "
2

2
. Therefore the equation 

! 

a + bi( )
2

= i has two sets of solutions, 

namely

! 

a =
2

2
, 

! 

b =
2

2
 and 

! 

a = "
2

2
, 

! 

b = "
2

2
. In this way, 

! 

2

2
+

2

2
i  and 

! 

"
2

2
+ "

2

2
i  are both square roots of 

! 

i . 

 
Note: A very similar write-up of this focus can be found at the website 
http://www.math.toronto.edu/mathnet/questionCorner/rootofi.html. 
 
 
Mathematical Focus 3 
Using the CAS to solve the equation 

! 

x
2

= i, where 

! 

x = a + bi  
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As a tool, the CAS should be self-consistent, in that if it provides the result 

! 

2

2
+

2

2
i  

when the user enters 

! 

i , then when solving an equation with solution 

! 

x = i , the CAS 

should provide the result 

! 

x =
2

2
+

2

2
i . By using the command cSolve on the TI-92 

Plus, as shown in the screen shot below, we can solve the equation 

! 

x
2

= i for the complex 
variable 

! 

x .  
 

 
 
 
Mathematical Focus 4 
Relating powers of i to rotations involving the unit circle on the complex plane 
 
Consider the unit circle on the complex plane, and on this circle, consider the point 
representations of i0 and i (figure 1).  

 
Figure 1 First quadrant of the unit circle on the complex plane. 

 
Note that the point representing i is the image of the point representing i0 under ρ(O,90°), a 
rotation of 90º about the origin (O). Thus, if the point for i0 could be represented as (1,0), 
and if the point for i could be represented as ρ(O,90°)((1,0))=(0,1), then the point for i  can 
be thought of as the image of the point for i0 under ρ(O,45°), a rotation of 45° (figure 2). 
Moreover, the point for i can also be thought about as the image of the point for i  
under ρ(O,45°) So, ρ(O,45°) composed with itself is the same as ρ(O,90°). That is, ρ2

(O,45°).=ρ(O,90°) 
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Figure 2 Images of points representing powers of i as rotations. 

We can notice that each point on the circle corresponds to the complex number, 
cos x + i sin x . This is shown in figure 3. 
 

 
Figure 3 Coordinates of Points on the Complex Unit Circle 

 

The point representing i
1

2  is the image of the point for i0 under a rotation of 45º about the 

origin. Therefore, the coordinates of i
1

2  have to be 
 

(cos45
o
,sin 45

o
) =

2

2
,
2

2

!

"
#

$

%
& .  Thus, 

i

1

2 =
2

2
+

2

2
i . 

 
 
 
Mathematical Focus 5 
Considering cyclic groups 
This situation deals with i , which can of course be written as i

1

2 . So, one way to go 
about this situation is to look for patterns in the powers of i. To begin with, let’s look at 
the integer powers of i, starting with i0 . If we were to plot points representing the 
imaginary numbers 3210

,,, iiii , we obtain the following figure (figure 4).  
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Figure 4 The four powers of i 

Note that all four powers of i above are on the complex unit circle. Moreover, the four 
points are positioned at equal increments around the circle (exactly at  90oincrements).  
Furthermore, we can see the that fourth power of i can be plotted in the same position as 
the zero power of i ( i.e., i4 = i0 = 1 ). We can also see that every integer power of i 
greater than 3 is plotted on the above four points around the complex unit circle. This 
arrangement, at equal increments, around a circle of the four powers of i, and the cyclic 
property of the powers described above, leads to looking at a cyclic group generated by i.  
 
Consider a cyclic group, (G, o), of order 4, isomorphic to (

 
Z
4
,+), which can be generated 

by using the imaginary number i as the generator, i.e. i4 k = 1, where k ! 0  and k is an 
integer. Note that 1 is called the identity element of the group G. Also, we can list all the 
elements of this group by considering the powers of i, i.e. G = i

4
= {1,i

1
,i
2
,i
3
} . As 

discussed before, the elements of the cyclic group, G, can be very naturally illustrated as 
four symmetric points on the unit circle in the complex plane, as shown in figure 4.  
 
However, since we are interested in i

1

2 , we can further this discussion of the powers of i, 

by examining the first eight powers of i, increasing the powers in increments of 1
2

. Thus, 

now we are increasing the order of the group from 4 to 8. So now we have the cyclic 

group, (H, o), isomorphic to (
 
Z
8
,+), given by H = i

8
= {1,i

1

2 ,i
1
,i

3

2 ,i
2
,i

5

2 ,i
3
,i

7

2 } . This 
group can also be illustrated on the unit circle on the complex plane as shown in figure 5. 
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Figure 5 The Cyclic Group (H, o) 
 

To obtain the co-ordinates of these points on the complex unit circle, we can refer back to 

focus 3 and obtain 

! 

i
1 2

=
2

2
+

2

2
i . 

Mathematical Focus 6 
Appealing to Euler’s formula and the geometry of the complex plane 
Knowing that every point on the unit circle on the complex plane corresponds to a 
complex number 

! 

z , where 

! 

z = cos" + isin" , Euler’s formula, 

! 

e
i"

= cos" + isin" , can be 
used to express those complex numbers in the exponential form 

! 

z = e
i" .  For example, if 

we let 

! 

" = # , we arrive at 

! 

z = e
i"

= cos" + isin" = #1, which can be represented by the 

point (-1,0) on the unit circle on the complex plane. Similarly, if we let ! = "
2

, we arrive 

at z = ei
!
2 = cos

!

2
+ i sin

!

2
= i , which can be represented by the point (0,1) on the unit 

circle on the complex plane. Since we are interested in determining 

! 

i  and since ei
!
2 = i , 

by Euler’s formula, it follows that e
i
!
2 = i . Since i

!
2 = e

i
!
2( )

1

2 , using properties of 

exponents, we can conclude that i
1

2 = e
i
!
4 . In this way, if we let ! = "

4
, we arrive at 

z = e
i
!
4 = cos

!

4
+ i sin

!

4
=

2

2
+

2

2
i , which can be represented by the point 2

2
,
2

2

!

"
#

$

%
&  

on the unit circle on the complex plane. Since ei
!
4 =

2

2
+

2

2
i , and i

1

2 = e
i
!
4 , we can 

conclude that i
1

2 =
2

2
+

2

2
i . 

 
 
2nd Commentary (Reflection) 
There are important ideas that connect representations and raise the issues of knowing 
which idea(s) to use and when to use the idea(s). By calling on trigonometry when seeing 

! 

2

2
, the expression 

! 

2

2
+

2

2
i  becomes a specific case of 

! 

cos x + isin x , where 

! 

x =
"

4
. 

This leads to the notion of the unit circle on the complex plane and the implications that 
would have, as the complex number 

! 

cos x + isin x  has coordinates 

! 

cos x,sin x( )  on the 
complex plane. Euler’s Formula connects Taylor Polynomials and derivatives to the 
complex unit circle. These sets of ideas are each well connected and each produce results, 
and we want teachers to be able to draw on them when they are useful. By having this 
ability or intuition, secondary teachers increase their effectiveness of coming up with a 
plausible and understandable explanation of the student’s question. 
 
Considering the concept of exponentiation as rotation rather than just as repeated 
multiplication leads one to the question of what exponentiation really means? Is it only 
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when we get to complex numbers that a conception of exponentiation as rotation makes 
sense? What about the interpretation of exponentiation as dimension? Is it a natural thing 
to start by introducing exponentiation as a direction to multiply something by itself? Or, 
if exponentiation is naturally introduced as repeated multiplication, how would these 
other conceptions come about? 
 
 
References: 
http://mathworld.wolfram.com/i.html 
http://www.math.toronto.edu/mathnet/questionCorner/rootofi.html 
 


