1. (30 points) Let X be the sum of the random roll of one fair six-sided dice and one fair four-sided dice. Find the following probabilities:

a. The probability of rolling a sum greater than 3.
b. $P(X \leq 5)$.
c. $P(X > 7)$.
d. $P(X = 6)$.
e. $P(X \geq 8)$

2. (30 points) Abby, Betty, Candler and Dave work together in an office. Their employer must choose two of them to attend a conference. To avoid unfairness, the choice will be made by constructing an SRS of size 2.

a. Show how you can randomly select the two workers using your calculator.
b. Write down the sample space (i.e., all possible combinations of two names).
c. What is the probability that Abby or Betty is chosen?
d. What is the probability that Dave is chosen?
e. What is the probability that Betty is not chosen?

3. (10 points) A bottling company uses a filling machine to fill plastic bottles with cola. The bottles are supposed to contain 300 ml. In fact, the contents vary according to a normal distribution with mean 298 ml and standard deviation 3 ml.

a. What is the probability that an individual bottle contains less than 295 ml?
b. What is the probability that the mean contents of the bottles in a six-pack is less that 295 ml?
c. Is 298 ml a parameter or a statistic?

4. (10 points) Red, blue, yellow and green marbles are in a box. Here are the approximate probabilities that a marble chosen at random will have a given color.

<table>
<thead>
<tr>
<th>Color</th>
<th>Red</th>
<th>Blue</th>
<th>Yellow</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.34</td>
<td>0.27</td>
<td>0.20</td>
<td>?</td>
</tr>
</tbody>
</table>

a. What is the probability that a marble chosen is green?
b. What is the probability that a marble chosen is blue, green or yellow?

5. (20 points) An educator wants to compare two methods of teaching statistical mechanics. One method is the use of computer simulation and the other method is lecture. He randomly divides the students into two groups. One group of ten students only uses the computer and the other group attends only lectures. At the end of the instructional unit, he tests and compares the students’ knowledge.

a. Sketch the design.
b. Is this an experiment or an observation? Why?
c. What are the experimental units?
d. What are the explanatory and response variables?
e. What are the factors and their levels?

Extra Credit

6. (2 points) What theorem states that when a sample of size n is drawn from any population with mean μ and standard deviation σ, with n sufficiently large, then the distribution of the sample mean is approximately normal with mean μ and standard deviation σ/\sqrt{n}?