PROBLEM:

Show that for all positive values of a and b, the arithmetic mean of a and b is greater than or equal to the geometric mean, with equality if and only if $a=b$.
That is, show that for all $a, b>0$ we have $\frac{a+b}{2} \geq \sqrt{a b}$, with $\frac{a+b}{2}=\sqrt{a b} \Leftrightarrow a=b$.

PROOF 1:

Assume, WLOG, that $a \geq b$. Construct a square as shown. The large square is at least as large as the four $a \times b$ rectangles (the yellow square is extra), so we have:

$$
\begin{aligned}
& (a+b)^{2} \geq 4 a b \\
& a+b \geq 2 \sqrt{a b} \\
& \frac{a+b}{2} \geq \sqrt{a b}
\end{aligned}
$$

Furthermore, the area of large square is exactly equal to the area of the four rectangles iff the yellow square's side (which is equal to $a-b$) has length zero. This occurs iff $a=b$.
Q.E.D.

PROOF 2:

$(a-b)^{2} \geq 0 \quad$ with equality iff $a=b$
$a^{2}-2 a b+b^{2} \geq 0 \quad$ with equality iff $a=b$
$a^{2}+2 a b+b^{2} \geq 4 a b$
$(a+b)^{2} \geq 4 a b$
$a+b \geq 2 \sqrt{a b}$
$\frac{a+b}{2} \geq \sqrt{a b} \quad$ with equality iff $a=b$
Q.E.D.

Note that this proof is extremely similar to Proof 1.

PROOF 3:

Construct a semicircle on a segment of length $a+b$. This circle's radius is $\frac{a+b}{2}$, the arithmetic mean of a and b.

Now construct a perpendicular segment from X to the semicircle. Let Y be its point of intersection with the semicircle.

Claim: $\mathrm{XY}=\sqrt{a b}$.
Proof:
By the Pythagorean Theorem, we have:

$$
\begin{aligned}
\mathrm{XY}^{2} & =\mathrm{CY}^{2}-\mathrm{CX}^{2}=\left(\frac{a+b}{2}\right)^{2}-\left(a-\frac{a+b}{2}\right)^{2}=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2} \\
& =\frac{1}{4}\left[(a+b)^{2}-(a-b)^{2}\right]=\frac{1}{4}\left[a^{2}+2 a b+b^{2}-\left(a^{2}-2 a b+b^{2}\right)\right] \\
& =\frac{1}{4}(4 a b)=a b
\end{aligned}
$$

So $\mathrm{XY}=\sqrt{a b}$. The claim is true.

So the green segment's length is the arithmetic mean of a and b, and the purple segment's length is the geometric mean of a and b. The green segment is the hypotenuse of right triangle CXY and the purple segment is a leg, so the purple segment is always shorter than the green segment, unless the triangle is degenerate. The triangle is degenerate when $\mathrm{X}=\mathrm{C}$, which occurs when $a=b$.

Thus, the arithmetic mean of a and b is greater than or equal to the geometric mean, with equality if and only if $a=b$. Q.E.D.

PROOF 4:

Place two circles, one of radius a and the other of radius b tangent to a horizontal line and tangent to each other, as shown.

Let's determine the length x.
By the Pythagorean Theorem:

$$
\begin{aligned}
x^{2} & =(b+a)^{2}-(b-a)^{2} \\
& =b^{2}+2 a b+a^{2}-\left(b^{2}-2 a b+a^{2}\right) \\
& =4 a b \\
\text { So } & x=2 \sqrt{a b}
\end{aligned}
$$

Now we can focus on the right triangle. It has hypotenuse $a+b$ and leg $x=2 \sqrt{a b}$. Thus, $a+b \geq 2 \sqrt{a b}$, so $\frac{a+b}{2} \geq \sqrt{a b}$.

Equality holds iff the triangle is degenerate. This occurs iff the segment connecting the two centers is horizontal, which occurs iff $a=b$.
Q.E.D.

