Spreadsheets

Assignment 12

Problem #4

By Erin Cain

 

 

In this problem we are asked to do the following:

Generate a Fibonnaci sequence in the first column using f(0) = 1, f(1) = 1,

f(n) = f(n-1) + f(n-2)

a.  Construct the ratio of each pair of adjacent terms in the Fibonnaci sequence. What happens as n increases? What about the ratio of every second term? etc.

b. Explore sequences where f(0) and f(1) are some arbitrary integers other than 1. If f(0)=1 and f(1) = 3, then your sequence is a Lucas Sequence. All such sequences, however, have the same limit of the ratio of successive terms.

To begin this problem we must first generate a Fibonnaci sequence in the first column of the spreadsheet.  In order to do this, we must first enter the first 2 entries in the Fibonnaci sequence in A2 and A3 (1 and 1).  Then, in A4, we must enter the formula for the Fibonnaci numbers which is = A2 + A3.  You then highlight the A4 cell, copy it, and then drag down and highlight the number of cells you want to fill and paste the formula.  The Fibonnaci sequence should then be visible in column A.

Fibonnaci Sequence

1

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

6765

10946

17711

28657

46368

75025

121393

196418

317811

514229

832040

1346269

2178309

Now we want to look at the ratios between each pair of adjacent terms in the Fibonnaci sequence.  In order to do this, we must move to column B in our spreadsheet.  In cell B3, we want to type in the formula = A3/A2.  Next we fill in the rest of the column in the same exact way we did before for just the sequence.  We get the following:

Fibonnaci Sequence

Ratios

1

 

1

1

2

1

3

2

5

1.5

8

1.666667

13

1.6

21

1.625

34

1.615385

55

1.619048

89

1.617647

144

1.618182

233

1.617978

377

1.618056

610

1.618026

987

1.618037

1597

1.618033

2584

1.618034

4181

1.618034

6765

1.618034

10946

1.618034

17711

1.618034

28657

1.618034

46368

1.618034

75025

1.618034

121393

1.618034

196418

1.618034

317811

1.618034

514229

1.618034

832040

1.618034

1346269

1.618034

2178309

1.618034

Let’s look at what happens to the ratios as the Fibonnaci sequence increases in value.  As you can see from the table, the ratios start at 1, jump up to 2, then drop down to 1.5, and then slightly jump up to approximately 1.6.  The ratios then end up staying at or close to the value of 1.618034.  One way we can summarize this is that as n approaches infinity, the ratios of two adjacent numbers in the Fibonnaci sequence approaches 1.618034. 

Now what will happen if we choose two arbitrary numbers to begin our sequence besides one.  Lets take 3 and 5 for example; i.e. f(0) = 3 and f(1) = 5.

Fibonnaci Sequence

Ratios

 

f(0) = 3 and f(1) = 5

ratios

1

 

 

3

 

1

1

 

5

1.666667

2

1

 

8

1.666667

3

2

 

13

1.6

5

1.5

 

21

1.625

8

1.666667

 

34

1.615385

13

1.6

 

55

1.619048

21

1.625

 

89

1.617647

34

1.615385

 

144

1.618182

55

1.619048

 

233

1.617978

89

1.617647

 

377

1.618056

144

1.618182

 

610

1.618026

233

1.617978

 

987

1.618037

377

1.618056

 

1597

1.618033

610

1.618026

 

2584

1.618034

987

1.618037

 

4181

1.618034

1597

1.618033

 

6765

1.618034

2584

1.618034

 

10946

1.618034

4181

1.618034

 

17711

1.618034

6765

1.618034

 

28657

1.618034

10946

1.618034

 

46368

1.618034

17711

1.618034

 

75025

1.618034

28657

1.618034

 

121393

1.618034

46368

1.618034

 

196418

1.618034

75025

1.618034

 

317811

1.618034

121393

1.618034

 

514229

1.618034

196418

1.618034

 

832040

1.618034

317811

1.618034

 

1346269

1.618034

514229

1.618034

 

2178309

1.618034

832040

1.618034

 

3524578

1.618034

1346269

1.618034

 

5702887

1.618034

2178309

1.618034

 

9227465

1.618034

First let’s note how different the sequence columns are.  Our new sequence, all though the entries are formed by the same formula, end up being very different numbers.  However, the ratios still seem to approach 1.618034 as n increases, i.e. as n approaches infinity. In actuality, the 2nd sequence reaches 1.618034 three numbers earlier than the Fibonnaci sequence.

Finally, as mentioned in the description of the problem at the top of the page, a Lucas Sequence is one in which f(0) = 1 and f(1) = 3.  Let us take a look at this case as well.

Fibonnaci Sequence

Ratios

 

f(0) = 3 and f(1) = 5

ratios

 

Lucas Sequence

ratios

1

 

 

3

 

 

1

 

1

1

 

5

1.666667

 

3

3

2

1

 

8

1.666667

 

4

1.333333

3

2

 

13

1.6

 

7

1.75

5

1.5

 

21

1.625

 

11

1.571429

8

1.666667

 

34

1.615385

 

18

1.636364

13

1.6

 

55

1.619048

 

29

1.611111

21

1.625

 

89

1.617647

 

47

1.62069

34

1.615385

 

144

1.618182

 

76

1.617021

55

1.619048

 

233

1.617978

 

123

1.618421

89

1.617647

 

377

1.618056

 

199

1.617886

144

1.618182

 

610

1.618026

 

322

1.61809

233

1.617978

 

987

1.618037

 

521

1.618012

377

1.618056

 

1597

1.618033

 

843

1.618042

610

1.618026

 

2584

1.618034

 

1364

1.618031

987

1.618037

 

4181

1.618034

 

2207

1.618035

1597

1.618033

 

6765

1.618034

 

3571

1.618034

2584

1.618034

 

10946

1.618034

 

5778

1.618034

4181

1.618034

 

17711

1.618034

 

9349

1.618034

6765

1.618034

 

28657

1.618034

 

15127

1.618034

10946

1.618034

 

46368

1.618034

 

24476

1.618034

17711

1.618034

 

75025

1.618034

 

39603

1.618034

28657

1.618034

 

121393

1.618034

 

64079

1.618034

46368

1.618034

 

196418

1.618034

 

103682

1.618034

75025

1.618034

 

317811

1.618034

 

167761

1.618034

121393

1.618034

 

514229

1.618034

 

271443

1.618034

196418

1.618034

 

832040

1.618034

 

439204

1.618034

317811

1.618034

 

1346269

1.618034

 

710647

1.618034

514229

1.618034

 

2178309

1.618034

 

1149851

1.618034

832040

1.618034

 

3524578

1.618034

 

1860498

1.618034

1346269

1.618034

 

5702887

1.618034

 

3010349

1.618034

2178309

1.618034

 

9227465

1.618034

 

4870847

1.618034

Once again, be sure to note that as n approaches infinity, the ratios approach 1.618034.  When looking at the Lucas sequence, it obtains a ratio of 1.618034 one number before the Fibonnaci sequence and two after the second sequence I made. 

 

RETURN