Logo

 Michelle E. Chung

* EMAT6680 Assignment 12: Fibonnaci Sequence



4. Generate a Fibonnaci Sequence in the first column using F(0)=1, F(1)=1,

f(n) = f(n-1) + f(n-2).
a. Construct the ratio of each pair of adjacent terms in the Fibonnaci sequence.
     What happens as n increases?
     What about the ratio of eery second term? etc. 

b. Explore sequences where f(0) and f(1) are some arbitary integers other than 1.
     If f(0)=1 and f(1)=3, then your sequence is a Lucas Sequence.
     All such sequences, however, have the same limit of the ratio of successive terms.

a. Fibonnaci Sequence

 

Fibonnaci Sequence Table
w/its ratios

 

   
n
Fibonnaci Sequence
f(n)/f(n-1)
f(n)/f(n-2)
f(n)/f(n-3)
f(n)/f(n-4)
1
1      
2
1 1    
3
2 2 2    
4
3 1.5 3 3  
5
5 1.666666667 2.5 5 5
6
8 1.6 2.666666667 4 8
7
13 1.625 2.6 4.333333333 6.5
8
21 1.615384615 2.625 4.2 7
9
34 1.619047619 2.615384615 4.25 6.8
10
55 1.617647059 2.619047619 4.230769231 6.875
11
89 1.618181818 2.617647059 4.238095238 6.846153846
12
144 1.617977528 2.618181818 4.235294118 6.857142857
13
233 1.618055556 2.617977528 4.236363636 6.852941176
14
377 1.618025751 2.618055556 4.235955056 6.854545455
15
610 1.618037135 2.618025751 4.236111111 6.853932584
16
987 1.618032787 2.618037135 4.236051502 6.854166667
17
1597 1.618034448 2.618032787 4.236074271 6.854077253
18
2584 1.618033813 2.618034448 4.236065574 6.854111406
19
4181 1.618034056 2.618033813 4.236068896 6.854098361
20
6765 1.618033963 2.618034056 4.236067627 6.854103343
21
10946 1.618033999 2.618033963 4.236068111 6.85410144
22
17711 1.618033985 2.618033999 4.236067926 6.854102167
23
28657 1.61803399 2.618033985 4.236067997 6.85410189
24
46368 1.618033988 2.61803399 4.23606797 6.854101996
25
75025 1.618033989 2.618033988 4.23606798 6.854101955
26
121393 1.618033989 2.618033989 4.236067976 6.854101971
27
196418 1.618033989 2.618033989 4.236067978 6.854101965
28
317811 1.618033989 2.618033989 4.236067977 6.854101967
29
514229 1.618033989 2.618033989 4.236067978 6.854101966
30
832040 1.618033989 2.618033989 4.236067977 6.854101966
31
1346269 1.618033989 2.618033989 4.236067978 6.854101966
32
2178309 1.618033989 2.618033989 4.236067977 6.854101966
33
3524578 1.618033989 2.618033989 4.236067978 6.854101966
34
5702887 1.618033989 2.618033989 4.236067977 6.854101966
35
9227465 1.618033989 2.618033989 4.236067977 6.854101966
 
Golden Ratio
Square
of Golden Ratio
Cubic
of Golden Ratio

4th power
of Golden Ratio


 

Scatter Plot
of the Ratios
 

Ratio1
: f(n)/f(n-1)

     Ratio1

  • The first ratio, the ratio of each pair of adjecent terms in the Fibonnaci Sequence, is approaching 1.618033989, which is known as Golden Ratio.

Ratio2
: f(n)/f(n-2)
      Ratio2
  • The second ratio, the ratio of every second term in the Fibonnaci Sequence, is approaching 2.618033989, which is the square of Golden Ratio.

Ratio3
: f(n)/f(n-3)
      Ratio3
  • The third ratio, the ratio of every third term in the Fibonnaci Sequence, is approaching 4.236067977, which is the cubic of Golden Ratio.

Ratio4
: f(n)/f(n-4)
      Ratio4
  • The forth ratio, the ratio of every forth term in the Fibonnaci Sequence, is approaching 6.854101966, which is the 4th power of Golden Ratio.


Conclusion

 
  • As n increases, the ratios are bouncing up and down;
    however, they are approaching limits of the sequence, which are Golden Ratio, Square of Golden Ratio, Cubic Golden Ratio, 4th power of Golden Ratio, etc. respectively.

So, we can predict, if we calculate f(n)/f(n-5), it would be limited to 5th power of Golden Ratio, and so on.

Let's check it.

Table
Scatter Plot
n
f(n)/f(n-5)
1
2
3
4
5
6
8
7
13
8
10.5
9
11.33333333
10
11
11
11.125
12
11.07692308
13
11.0952381
14
11.08823529
15
11.09090909
16
11.08988764
17
11.09027778
18
11.09012876
19
11.09018568
20
11.09016393
21
11.09017224
22
11.09016907
23
11.09017028
24
11.09016982
25
11.09016999
26
11.09016993
27
11.09016995
28
11.09016994
29
11.09016994
30
11.09016994
31
11.09016994
32
11.09016994
33
11.09016994
34
11.09016994
35
11.09016994
 
5th power
of Golden Ratio
Ratio5

From the table, we can assert our conjecture.

  • The first terms of the ratios are same as Fibonnaci Sequence.
    So, if we take the first term of each ratio and make a sequence, it would be Fibonnaci Sequence.

Back to the Top

b. Lucas Sequence

 

Lucas Sequence Table
w/its ratios

 

   
n
Lucas Sequence
f(n)/f(n-1)
f(n)/f(n-2)
f(n)/f(n-3)
f(n)/f(n-4)
1
1      
2
3 3    
3
4 1.333333333 4    
4
7 1.75 2.333333333 7  
5
11 1.571428571 2.75 3.666666667 11
6
18 1.636363636 2.571428571 4.5 6
7
29 1.611111111 2.636363636 4.142857143 7.25
8
47 1.620689655 2.611111111 4.272727273 6.714285714
9
76 1.617021277 2.620689655 4.222222222 6.909090909
10
123 1.618421053 2.617021277 4.24137931 6.833333333
11
199 1.617886179 2.618421053 4.234042553 6.862068966
12
322 1.618090452 2.617886179 4.236842105 6.85106383
13
521 1.618012422 2.618090452 4.235772358 6.855263158
14
843 1.618042226 2.618012422 4.236180905 6.853658537
15
1364 1.618030842 2.618042226 4.236024845 6.854271357
16
2207 1.618035191 2.618030842 4.236084453 6.854037267
17
3571 1.61803353 2.618035191 4.236061684 6.854126679
18
5778 1.618034164 2.61803353 4.236070381 6.854092527
19
9349 1.618033922 2.618034164 4.236067059 6.854105572
20
15127 1.618034014 2.618033922 4.236068328 6.854100589
21
24476 1.618033979 2.618034014 4.236067844 6.854102492
22
39603 1.618033992 2.618033979 4.236068029 6.854101765
23
64079 1.618033987 2.618033992 4.236067958 6.854102043
24
103682 1.618033989 2.618033987 4.236067985 6.854101937
25
167761 1.618033989 2.618033989 4.236067975 6.854101977
26
271443 1.618033989 2.618033989 4.236067979 6.854101962
27
439204 1.618033989 2.618033989 4.236067977 6.854101968
28
710647 1.618033989 2.618033989 4.236067978 6.854101966
29
1149851 1.618033989 2.618033989 4.236067977 6.854101966
30
1860498 1.618033989 2.618033989 4.236067978 6.854101966
31
3010349 1.618033989 2.618033989 4.236067977 6.854101966
32
4870847 1.618033989 2.618033989 4.236067978 6.854101966
33
7881196 1.618033989 2.618033989 4.236067977 6.854101966
34
12752043 1.618033989 2.618033989 4.236067978 6.854101966
35
20633239 1.618033989 2.618033989 4.236067977 6.854101966
 
Golden Ratio
Square
of Golden Ratio
Cubic
of Golden Ratio

4th power
of Golden Ratio


 

Scatter Plot
of the Ratios
 

Ratio1
: f(n)/f(n-1)

     L_Ratio1

  • The first ratio, the ratio of each pair of adjecent terms in the Lucas Sequence, starts differnt number, 3; however, it is still approaching 1.618033989, which is known as Golden Ratio, just like Fibonnaci Sequence.

Ratio2
: f(n)/f(n-2)
      L_Ratio2
  • The second ratio, the ratio of every second term in the Lucas Sequence, starts differnt number, 4; however, it is still approaching 2.618033989, which is square of Golden Ratio, just like Fibonnaci Sequence.

Ratio3
: f(n)/f(n-3)
      L_Ratio3
  • The third ratio, the ratio of every third term in the Lucas Sequence, starts differnt number, 7; however, it is still approaching 4.236067977, which is cubic of Golden Ratio, just like Fibonnaci Sequence.

Ratio4
: f(n)/f(n-4)
      L_Ratio4
  • The forth ratio, the ratio of every forth term in the Lucas Sequence, starts differnt number, 11; however, it is still approaching 6.854101966, which is 4th power of Golden Ratio, just like Fibonnaci Sequence.

Conclusion

 
  • The Lucas Sequence has different numbers from Fibonnaci Sequence. So, the ratios start from different numbers;
    however, they are approaching same limits of the sequence as Fibonnaci Sequence, which are Golden Ratio, Square of Golden Ratio, Cubic Golden Ratio, 4th power of Golden Ratio, etc. respectively.

So, we still can predict that if we calculate f(n)/f(n-5), it would be limited to 5th power of Golden Ratio, and so on, just like Fibonnaci Sequence.

  • The first terms of the ratios are same as Lucas Sequence.
    So, if we take the first term of each ratio and make a sequence, it would be Lucas Sequence.

Back to the Top

c. Other Sequences

 

When
f(0)=1 and f(1)=10

 

   
n
Sequence
f(n)/f(n-1)
f(n)/f(n-2)
f(n)/f(n-3)
f(n)/f(n-4)
1
1      
2
10 10    
3
11 1.1 11    
4
21 1.909090909 2.1 21  
5
32 1.523809524 2.909090909 3.2 32
6
53 1.65625 2.523809524 4.818181818 5.3
7
85 1.603773585 2.65625 4.047619048 7.727272727
8
138 1.623529412 2.603773585 4.3125 6.571428571
9
223 1.615942029 2.623529412 4.20754717 6.96875
10
361 1.618834081 2.615942029 4.247058824 6.811320755
11
584 1.617728532 2.618834081 4.231884058 6.870588235
12
945 1.618150685 2.617728532 4.237668161 6.847826087
13
1529 1.617989418 2.618150685 4.235457064 6.856502242
14
2474 1.618051014 2.617989418 4.23630137 6.853185596
15
4003 1.618027486 2.618051014 4.235978836 6.854452055
16
6477 1.618036473 2.618027486 4.236102027 6.853968254
17
10480 1.61803304 2.618036473 4.236054972 6.854153041
18
16957 1.618034351 2.61803304 4.236072945 6.854082458
19
27437 1.61803385 2.618034351 4.23606608 6.854109418
20
44394 1.618034042 2.61803385 4.236068702 6.85409912
21
71831 1.618033969 2.618034042 4.236067701 6.854103053
22
116225 1.618033996 2.618033969 4.236068083 6.854101551
23
188056 1.618033986 2.618033996 4.236067937 6.854102125
24
304281 1.61803399 2.618033986 4.236067993 6.854101906
25
492337 1.618033988 2.61803399 4.236067972 6.854101989
26
796618 1.618033989 2.618033988 4.23606798 6.854101957
27
1288955 1.618033989 2.618033989 4.236067977 6.85410197
28
2085573 1.618033989 2.618033989 4.236067978 6.854101965
29
3374528 1.618033989 2.618033989 4.236067977 6.854101967
30
5460101 1.618033989 2.618033989 4.236067978 6.854101966
31
8834629 1.618033989 2.618033989 4.236067977 6.854101966
32
14294730 1.618033989 2.618033989 4.236067978 6.854101966
33
23129359 1.618033989 2.618033989 4.236067977 6.854101966
34
37424089 1.618033989 2.618033989 4.236067978 6.854101966
35
60553448 1.618033989 2.618033989 4.236067977 6.854101966
 
Golden Ratio
Square
of Golden Ratio
Cubic
of Golden Ratio

4th power
of Golden Ratio

 

When
f(0)=10 and f(1)=17
 
n
Sequence
f(n)/f(n-1)
f(n)/f(n-2)
f(n)/f(n-3)
f(n)/f(n-4)
1
10      
2
17 1.7    
3
27 1.588235294 2.7    
4
44 1.62962963 2.588235294 4.4  
5
71 1.613636364 2.62962963 4.176470588 7.1
6
115 1.61971831 2.613636364 4.259259259 6.764705882
7
186 1.617391304 2.61971831 4.227272727 6.888888889
8
301 1.61827957 2.617391304 4.23943662 6.840909091
9
487 1.617940199 2.61827957 4.234782609 6.85915493
10
788 1.618069815 2.617940199 4.23655914 6.852173913
11
1275 1.618020305 2.618069815 4.235880399 6.85483871
12
2063 1.618039216 2.618020305 4.23613963 6.853820598
13
3338 1.618031992 2.618039216 4.236040609 6.854209446
14
5401 1.618034751 2.618031992 4.236078431 6.854060914
15
8739 1.618033697 2.618034751 4.236063984 6.854117647
16
14140 1.6180341 2.618033697 4.236069503 6.854095977
17
22879 1.618033946 2.6180341 4.236067395 6.854104254
18
37019 1.618034005 2.618033946 4.2360682 6.854101092
19
59898 1.618033983 2.618034005 4.236067893 6.8541023
20
96917 1.618033991 2.618033983 4.23606801 6.854101839
21
156815 1.618033988 2.618033991 4.236067965 6.854102015
22
253732 1.618033989 2.618033988 4.236067982 6.854101948
23
410547 1.618033989 2.618033989 4.236067976 6.854101973
24
664279 1.618033989 2.618033989 4.236067978 6.854101964
25
1074826 1.618033989 2.618033989 4.236067977 6.854101967
26
1739105 1.618033989 2.618033989 4.236067978 6.854101966
27
2813931 1.618033989 2.618033989 4.236067977 6.854101966
28
4553036 1.618033989 2.618033989 4.236067978 6.854101966
29
7366967 1.618033989 2.618033989 4.236067977 6.854101966
30
11920003 1.618033989 2.618033989 4.236067978 6.854101966
31
19286970 1.618033989 2.618033989 4.236067977 6.854101966
32
31206973 1.618033989 2.618033989 4.236067978 6.854101966
33
50493943 1.618033989 2.618033989 4.236067977 6.854101966
34
81700916 1.618033989 2.618033989 4.236067977 6.854101966
35
132194859 1.618033989 2.618033989 4.236067977 6.854101966
 
Golden Ratio
Square
of Golden Ratio
Cubic
of Golden Ratio

4th power
of Golden Ratio

 

When
f(0)=-7 and f(1)=-3
 
n
Sequence
f(n)/f(n-1)
f(n)/f(n-2)
f(n)/f(n-3)
f(n)/f(n-4)
1
-7      
2
-3 0.428571429    
3
-10 3.333333333 1.428571429    
4
-13 1.3 4.333333333 1.857142857  
5
-23 1.769230769 2.3 7.666666667 3.285714286
6
-36 1.565217391 2.769230769 3.6 12
7
-59 1.638888889 2.565217391 4.538461538 5.9
8
-95 1.610169492 2.638888889 4.130434783 7.307692308
9
-154 1.621052632 2.610169492 4.277777778 6.695652174
10
-249 1.616883117 2.621052632 4.220338983 6.916666667
11
-403 1.618473896 2.616883117 4.242105263 6.830508475
12
-652 1.617866005 2.618473896 4.233766234 6.863157895
13
-1055 1.61809816 2.617866005 4.236947791 6.850649351
14
-1707 1.618009479 2.61809816 4.23573201 6.855421687
15
-2762 1.618043351 2.618009479 4.236196319 6.853598015
16
-4469 1.618030413 2.618043351 4.236018957 6.854294479
17
-7231 1.618035355 2.618030413 4.236086702 6.854028436
18
-11700 1.618033467 2.618035355 4.236060825 6.854130053
19
-18931 1.618034188 2.618033467 4.236070709 6.854091238
20
-30631 1.618033913 2.618034188 4.236066934 6.854106064
21
-49562 1.618034018 2.618033913 4.236068376 6.854100401
22
-80193 1.618033978 2.618034018 4.236067825 6.854102564
23
-129755 1.618033993 2.618033978 4.236068036 6.854101738
24
-209948 1.618033987 2.618033993 4.236067955 6.854102053
25
-339703 1.618033989 2.618033987 4.236067986 6.854101933
26
-549651 1.618033989 2.618033989 4.236067974 6.854101979
27
-889354 1.618033989 2.618033989 4.236067979 6.854101961
28
-1439005 1.618033989 2.618033989 4.236067977 6.854101968
29
-2328359 1.618033989 2.618033989 4.236067978 6.854101966
30
-3767364 1.618033989 2.618033989 4.236067977 6.854101967
31
-6095723 1.618033989 2.618033989 4.236067978 6.854101966
32
-9863087 1.618033989 2.618033989 4.236067977 6.854101966
33
-15958810 1.618033989 2.618033989 4.236067978 6.854101966
34
-25821897 1.618033989 2.618033989 4.236067977 6.854101966
35
-41780707 1.618033989 2.618033989 4.236067978 6.854101966
 
Golden Ratio
Square
of Golden Ratio
Cubic
of Golden Ratio

4th power
of Golden Ratio

 

Conclusion

 
  • As we see, no matter what numbers we put into f(0) and f(1), the ratios are approaching the same limits of the sequence as Fibonnaci Sequence, which are Golden Ratio, Square of Golden Ratio, Cubic Golden Ratio, 4th power of Golden Ratio, etc. respectively.

>>> Conjecture : The reason why the ratios are approaching the same limits of the sequence as Fibonnaci Sequence, which are Golden Ratio, Square of Golden Ratio, Cubic Golden Ratio, 4th power of Golden Ratio, etc. respectively, is the ratios come from the recursion, not from the initial numbers.



Button Go Back to Top
Button Go Back to Michelle's Main page
Button Go Back to EMAT 6680 Homepage
Copyright @ Michelle E. Chung