Look at the construction above.
Note that an angle of circumference of an arc is always constant.
From this fact, we can conclude following:
Angle L
Since angle ALM and angle ABM are angles of circumference of arc AM, m(angle ALM) = m(angle ABM).
Also, m(angle ABM) = m(angle ABC)/2 because line segment BM is an angle bisector.
So, m(angle ALM) = m(angle ABC)/2.
Similarly, m(angle ALN) = m(angle BCA)/2 because angle ALN and angle ACN are angles of circumference of arc AN and m(angle ACN) = m(angle BCA)/2.
Since m(angle NLM) = m(angle ALM) + m(angle ALN), m(angle NLM) = m(angle ABC)/2 + m(angle BCA)/2.
Angle N
Since angle CNL and angle CAL are angles of circumference of arc CL, m(angle CNL) = m(angle CAL).
Also, m(angle CAL) = m(angle CAB)/2 because line segment AL is an angle bisector.
So, m(angle CNL) = m(angle CAB)/2.
Similarly, m(angle CNM) = m(angle CBA)/2 because angle CNM and angle CBM are angles of circumference of arc CM and m(angle CBM) = m(angle ABC)/2.
Since m(angle MNL) = m(angle CNL) + m(angle CNM), m(angle MNL) = m(angle CAB)/2 + m(angle ABC)/2.
Angle M
Since angle BMN and angle BCN are angles of circumference of arc BN, m(angle BMN) = m(angle BCN).
Also, m(angle BCN) = m(angle BCA)/2 because line segment CN is an angle bisector.
So, m(angle BMN) = m(angle BCA)/2.
Similarly, m(angle BML) = m(angle BAC)/2 because angle BML and angle BAL are angles of circumference of arc BL and m(angle BAL) = m(angle BAC)/2.
Since m(angle LMN) = m(angle BMN) + m(angle BML), m(angle LMN) = m(angle BCA)/2 + m(angle BAC)/2.
Therefore, we can write angles of triangle LMN in terms of angles A, B, and C, and