Department of Mathematics and Science
Education Allyson Hallman |
|||||||||
|
|||||||||
|
|
|
|||||||
A detailed examination of ÒbÓ |
|||||||||
|
|
|
|||||||
Consider: |
|||||||||
|
|
|
|||||||
What effect does b have? LetÕs consider the case where a = 1 and c = 1. |
|||||||||
|
|
|
|||||||
Graph: |
|||||||||
We can classify all the pretty graphs into one of the three following categories: |
|||||||||
|
|
|
|||||||
or |
|
|
|||||||
2 roots |
1 root |
No real roots |
|||||||
|
|
|
|||||||
ItÕs all about the discriminant: b2 - 4ac |
|||||||||
To have two real roots the discriminant must be greater than 0. |
To have one real root the discriminant must be equal to 0. |
To have no real roots the discriminant must be less than 0. |
|||||||
|
|
|
|||||||
And we know a and c are 1. Substitution gives us: |
|||||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
b <
-2 or b > 2 |
b = -2
or b = 2 |
b >
-2 and b < 2 |
|||||||
|
|
|
|||||||
What else interesting might we find in the graph? |
|||||||||
It seems that connecting the vertices of each parabola generates yet another parabola. (I sketched this one in Òpaint and copied it on top of my graphs.) |
|||||||||
|
|
|
|||||||
Can we somehow generalize this parabola, based on b? Sure, what are the vertices of for all values of b. |
|||||||||
|
|
|
|||||||
|
|||||||||
|
|
|
|||||||
|
|||||||||
|
|
|
|||||||
|
|||||||||
|
|
|
|||||||
|
|||||||||
|
|
|
|||||||
We can conclude the vertex of is |
|||||||||
WouldnÕt it be great to graph this? Ah, how about parametric equations. |
|||||||||
|
|
|
|||||||
Can we find a function to represent this parametric equation. |
|||||||||
|
|
|
|||||||
We can start with: |
|||||||||
|
|
|
|||||||
We know the vertex of the parabola is (0, 1). So we have: |
|||||||||
|
|
|
|||||||
It only remains to find a. We can do this by plugging in a point on the parabola for (x, y) and solving the resulting equation for a. For ease of calculation we will choose (-1, 0) which is generated by plugging in t = 2 to our parametric equations for x and y. |
|||||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
|
|
|
|||||||
Which simplified gives us as the equation that generates all the vertices of all the parabolas of the form . |
|||||||||
|
|
|
|||||||
Now, the really fun partÉ.. Can we find an equation that generates the vertices of when a, b, and c vary? |
|||||||||
|
|
|
|||||||
Generally, what is the form of the vertex of ? |
|||||||||
|
|
|
|||||||
Completing the square, we have: |
|||||||||
|
|
|
|||||||
|
|||||||||
|
|
|
|||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
|
|||||||||
Ah, so in general the vertex of is |
|||||||||
|
|||||||||
So we have these two parametric equations: and Can we write one in terms of the other and so generate a general equation for the vertices of ? |
|||||||||
|
|||||||||
|
|||||||||
|
The x-coordinate of the vertex of a parabola. |
||||||||
|
|
||||||||
|
Square both sides. |
||||||||
|
|
||||||||
|
Multiply both sides by a. |
||||||||
|
|
||||||||
|
Multiply both sides by -1. |
||||||||
|
|
||||||||
|
Add c to both sides. |
||||||||
|
|
||||||||
|
Substitute what we calculated as the y-coordinate of our vertex. |
||||||||
|
|
||||||||
BIG
CONCLUSION (drum roll pleaseÉ.) And so at last the equation generates all the vertices of the parabolas of the form . |
|||||||||