Spreadsheet Explorations

 

 

The Problem:

I am to place four numbers in the first row on a spreadsheet as follows.       A B C D

For each successive row replace the entries by the absolute value of the difference of the entry just above and the entry just to the right in the previous row. In the fourth position use the absolute value of the difference of the fourth and the first

                                                                                                 |A-B| |B-C| |C-D| |D-A|

________________________________________________________________________

 

Ok, LetÕs start by substituting arbitrary values in for A, B, C, and D and see what happens. LetÕs try: 1, 2, 3, 4

 

0

1

2

3

4

1

1

1

1

3

2

0

0

2

2

3

0

2

0

2

4

2

2

2

2

5

0

0

0

0

 

The process ends in zeros after 4 rows. Not bad for the first try. Now letÕs continue, hoping to find some sort of pattern.

LetÕs try alternating between zeros:  11, 0, 29, 0.

 

0

11

0

29

0

1

11

29

29

11

2

18

0

18

0

3

18

18

18

18

4

0

0

0

0

 

Wow, that obviously is not the pattern. It now ends in zeros after only 3 rows. LetÕs try some larger numbers with zeros at the end : 10000, 14, 0, and 0 .

 

 

0

10000

14

0

0

1

9986

14

0

10000

2

9972

14

10000

14

3

9958

9986

9986

9958

4

28

0

28

0

5

28

28

28

28

6

0

0

0

0

  

It now ends in zeros after 5 rows. It does seem to always end in zero.

LetÕs try decimals:  4.2, 5.3, 6.4, 7.5.

 

0

4.2

5.30

6.4

7.5

1

1.1

1.1

1.1

3.3

2

8.88E-16

8.88E-16

2.2

2.2

3

0

2.2

0

2.2

4

2.2

2.2

2.2

2.2

5

0

0

0

0

 

Again, the process ends in zeros after 4 rows.

 

LetÕs try numbers that have some sort of relationship. LetÕs try: 3, 5, 7, 9.

0

3

5

7

9

1

2

2

2

6

2

0

0

4

4

3

0

4

0

4

4

4

4

4

4

5

0

0

0

0

 

Well, that did not improve things. I am now back to ending in zeros after 4 rows.

LetÕs try:  2, 4, 8, 16.

 

0

2

4

8

16

1

2

4

8

14

2

2

4

6

12

3

2

2

6

10

4

0

4

4

8

5

4

0

4

8

6

4

4

4

4

7

0

0

0

0

 

Well, it looks like IÕm making progress and that some sort of pattern is the key. The process ends in zeros after 6 rows. It looks like the pattern could be multiplying by two, or successive powers lets try multiplying by two first.

LetÕs try 6, 12, 24, 48.

 

0

6.00E+00

1.20E+01

2.40E+01

4.80E+01

1

6

12

24

42

2

6

12

18

36

3

6

6

18

30

4

0

12

12

24

5

12

0

12

24

6

12

12

12

12

7

0

0

0

0

 

Again, the process ends in zeros after 6 rows.

LetÕs try decimals: 0.625, 1.25, 2.5, 5

 

0

.625

1.25

2.50

5.00

1

0.625

1.25

2.5

4.375

2

0.625

1.25

1.875

3.75

3

0.625

0.625

1.875

3.125

4

0

1.25

1.25

2.5

5

1.25

0

1.25

2.5

6

1.25

1.25

1.25

1.25

 

Again, the process ends in zeros after 6 rows.

LetÕs try the successive exponents, which means that B=A^2, C=A^3, D=A^4.

I have created a formula in excel to perform the exponential calculations, I only need to enter a value for A. LetÕs try A=7.

 

0

7

49

343

2401

1

42

294

2058

2394

2

252

1764

336

2352

3

1512

1428

2016

2100

4

84

588

84

588

5

504

504

504

504

 

Well, my previous conjecture seems to be a little flawed.

LetÕs try a decimal, A = 3.1

0

3.10E+00

9.61E+00

2.98E+01

9.24E+01

1

6.51

20.181

62.5611

89.2521

2

13.671

42.3801

26.691

82.7421

3

28.7091

15.6891

56.0511

69.0711

4

13.02

40.362

13.02

40.362

5

27.342

27.342

27.342

27.342

6

3.55E-15

0

3.55E-15

0

7

3.55E-15

3.55E-15

3.55E-15

3.55E-15

8

0

0

0

0

 

Well, at least I am making progress. Now I have 7 rows before I reach zero. It appears that decimals are the key. But where do I start? Is there a particular pattern? LetÕs try another decimal, A= 1.62.

 

 

 

 

 

 

0

1.62

2.62

4.25

6.89

1

1.00468

1.627707

2.637089

5.269476

2

0.623027

1.009382

2.632387

4.264796

3

0.386355

1.623005

1.632409

3.641769

4

1.236651

0.009404

2.00936

3.255414

5

1.227247

1.999956

1.246054

2.018764

6

0.772709

0.753902

0.772709

0.791517

7

0.018808

0.018808

0.018808

0.018808

8

2.22E-16

2.22E-16

2.22E-16

2.22E-16

9

0

0

0

0

 

Wow, IÕm not up to 8 rows before zeros, letÕs try A=1.85.

 

0

1.85E+00

3.43E+00

6.36E+00

1.18E+01

1

1.578892

2.924685

5.417586

9.921163

2

1.345793

2.492901

4.503577

8.342271

3

1.147107

2.010677

3.838694

6.996478

4

0.863569

1.828017

3.157784

5.84937

5

0.964447

1.329768

2.691586

4.985801

6

0.365321

1.361818

2.294215

4.021354

7

0.996498

0.932396

1.727139

3.656033

8

0.064101

0.794742

1.928894

2.659535

9

0.730641

1.134152

0.730641

2.595434

10

0.403511

0.403511

1.864793

1.864793

11

0

1.461282

0

1.461282

12

1.461282

1.461282

1.461282

1.461282

13

0

0

0

0

14

0

0

0

0

Hooray, I now have 12 rows before I reach zeros. LetÕs keep it going. LetÕs try 1.84.

 

0

1.84E+00

3.39E+00

6.23E+00

1.15E+01

1

1.5456

2.843904

5.232783

9.622287

2

1.298304

2.388879

4.389504

8.076687

3

1.090575

2.000625

3.687183

6.778383

4

0.910049

1.686559

3.0912

5.687808

5

0.776509

1.404641

2.596608

4.777759

6

0.628132

1.191967

2.181151

4.001249

7

0.563835

0.989184

1.820099

3.373117

8

0.425349

0.830915

1.553019

2.809283

9

0.405565

0.722104

1.256264

2.383933

10

0.316539

0.534159

1.12767

1.978368

11

0.21762

0.59351

0.850698

1.661829

12

0.37589

0.257188

0.811131

1.444209

13

0.118702

0.553943

0.633078

1.068319

14

0.435241

0.079135

0.435241

0.949617

15

0.356106

0.356106

0.514376

0.514376

16

0

0.158269

0

0.158269

17

0.158269

0.158269

0.158269

0.158269

18

0

0

0

0

 

Can you believe it?  I now have a whopping 17 rows before it reaches zeros.

LetÕs try 1.86

0

1.86

3.46

6.43

1.20E+01

1

1.5996

2.975256

5.533976

10.10883

2

1.375656

2.55872

4.574856

8.509232

3

1.183064

2.016136

3.934376

7.133576

4

0.833072

1.91824

3.1992

5.950512

5

1.085169

1.28096

2.751312

5.11744

6

0.195791

1.470352

2.366128

4.032272

7

1.274561

0.895776

1.666143

3.836481

8

0.378785

0.770367

2.170337

2.561919

9

0.391582

1.39997

0.391582

2.183134

10

1.008388

1.008388

1.791552

1.791552

11

2.22E-16

0.783164

2.22E-16

0.783164

12

0.783164

0.783164

0.783164

0.783164

13

0

0

0

0

 

Interesting, it decreases to 12 rows before zeros.

LetÕs try going back down to A=1.83

0

1.83E+00

3.35E+00

6.13E+00

1.12E+01

1

1.5189

2.779587

5.086644

9.385131

2

1.260687

2.307057

4.298487

7.866231

3

1.04637

1.99143

3.567744

6.605544

4

0.94506

1.576314

3.0378

5.559174

5

0.631255

1.461486

2.521374

4.614114

6

0.830231

1.059888

2.09274

3.98286

7

0.229658

1.032852

1.890119

3.152629

8

0.803194

0.857267

1.26251

2.922971

9

0.054073

0.405243

1.660461

2.119777

10

0.35117

1.255219

0.459315

2.065704

11

0.904049

0.795904

1.606389

1.714534

12

0.108146

0.810485

0.108146

0.810485

13

0.702339

0.702339

0.702339

0.702339

14

0

0

0

0

 

Now, I have 13 rows before it reaches zero. It appears that it reaches the maximum number of rows when A is near 1.84.  The maximum number of rows that I discovered before a zero row is generated was 17. But, I think that this number is much larger. In fact, I think that this number may approach infinity.