Theorem. The mid-segment of a triangle is parallel to the third side and is congruent to one half of the third side. Moreover, four triangles formed by three mid-segments of the triangles are all congruent.
Proof. 

Let P be the midpoint of a side 
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 of ∆ABC. Construct a parallel line l1 through P to 
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 and let Q be the intersection point of l1 with 
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.  Construct another parallel line l2 through P parallel to 
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 and let R be the intersection of l2 with 
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. 

Then ∆APQ and ∆PBR are congruent by ASA. Since the quadrilateral PQCR is a parallelogram, 
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and 
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. Therefore Q and R are midpoints of 
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and 
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each by the uniqueness of the midpoint of each side. If we draw a parallel line passes through a midpoint of a side, then the intersection of the parallel line with the opposite side is the midpoint of the side. We note that, in the similar manner, we can also show that 
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 is parallel to 
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and its length is half of the length of 
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