Statement: All numbers are $n=2^{l}, l \in \mathbb{N}$.
I.Let us prove that for all even natural numbers. We are claiming that after a certain finite number of steps all elements of the sequence will become even. For us to be able to do that let us form a table of differences of sequence $\left(a_{i}\right) i \in \mathbb{N}$, where $a_{i}=x_{i+1}$, for $i=0,1, \ldots, n-1$ and $a_{i}:=a_{i-n}, i \geq n$. It is clear that all sequences of the differences will periodically repeat. Number $a_{i}^{k}, 0 \leq i \leq n-1$ is generally equal to $(i+1)$-member of the sequence obtained after k transformations of the sequence $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ (because of the absolute values in the problem), but it is easily seen that those two numbers are of same parity.

Let calculate now the remainder when dividing $a_{i}^{\left(2^{l}\right)}$ by 2 . We have:

$$
a_{i}^{\left(2^{l}\right)}=\sum_{j=0}^{2^{l}}(-1)^{2^{l-j}}\binom{2^{l}}{j} a_{i+j} \equiv a_{i}+a_{i+2^{l}}=2 a_{i} \equiv 0(\bmod 2) .
$$

Hence, $a_{i}^{\left(2^{l}\right)}$ is even for all i and therefore all elements of the sequence obtained from $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ with $2 l$ operations are even likewise. We can divide them by 2 in our minds and proceed. We will again at some point get only even numbers, what means that all newly obtained elements of the sequence are divisible by 4 . If we continue this iteration, we conclude that after a finite number of steps all elements of the sequence will be divisible with an arbitrary exponent of number 2 . On the other hand, all elements if the sequence obtained from $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ are non-negative and non greater than $\max \left\{x_{1}^{(l)}, x_{2}^{(l)}, \ldots, x_{n}^{(l)}\right\}$, where $x_{1}^{(l)}, x_{2}^{(l)}, \ldots, x_{n}^{(l)}$ are gotten after the first transformation. This is obvious since $x_{j}^{(l)}, x_{j+1}^{(l)} \geq 0$ and $\left|x_{j+1}^{(l)}-x_{j}^{(l)}\right| \leq \max \left\{x_{j}^{(l)}, x_{j+1}^{(l)}\right\}$

Therefore, we will get to the sequence of all zeroes.
II. Let us prove that the claim is not true for all others natural numbers. Let n be from sequence $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ such that we can get only zeroes and not all x_{j} equal.

Therefore,

$$
n=\sum_{j=1}^{n} \frac{\left|x_{j+1}^{\prime}-x_{j}^{\prime}\right|}{a} \equiv \sum_{j=1}^{n} \frac{x_{j+1}^{\prime}-x_{j}^{\prime}}{a}=0(\bmod 2)
$$

Hence, n must be even.
Q.E.D.

