Rayen Antillanca.
Assignment 12
Generate
a Fibonnaci sequence in the first column using f(0) = 1, f(1) = 1,f(n) = f(n-1) + f(n-2)
Fibonnaci Sequence |
|||||
n |
Fibonnaci Sequence |
|
|
|
|
1 |
1 |
||||
2 |
1 |
1 |
|||
3 |
2 |
2 |
2 |
||
4 |
3 |
1.5 |
3 |
3 |
|
5 |
5 |
1.666667 |
2.5 |
5 |
5 |
6 |
8 |
1.6 |
2.666667 |
4 |
8 |
7 |
13 |
1.625 |
2.6 |
4.333333 |
6.5 |
8 |
21 |
1.615385 |
2.625 |
4.2 |
7 |
9 |
34 |
1.619048 |
2.615385 |
4.25 |
6.8 |
10 |
55 |
1.617647 |
2.619048 |
4.230769 |
6.875 |
11 |
89 |
1.618182 |
2.617647 |
4.238095 |
6.846154 |
12 |
144 |
1.617978 |
2.618182 |
4.235294 |
6.857143 |
13 |
233 |
1.618056 |
2.617978 |
4.236364 |
6.852941 |
14 |
377 |
1.618026 |
2.618056 |
4.235955 |
6.854545 |
15 |
610 |
1.618037 |
2.618026 |
4.236111 |
6.853933 |
16 |
987 |
1.618033 |
2.618037 |
4.236052 |
6.854167 |
17 |
1597 |
1.618034 |
2.618033 |
4.236074 |
6.854077 |
18 |
2584 |
1.618034 |
2.618034 |
4.236066 |
6.854111 |
19 |
4181 |
1.618034 |
2.618034 |
4.236069 |
6.854098 |
20 |
6765 |
1.618034 |
2.618034 |
4.236068 |
6.854103 |
21 |
10946 |
1.618034 |
2.618034 |
4.236068 |
6.854101 |
22 |
17711 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
23 |
28657 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
24 |
46368 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
25 |
75025 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
26 |
121393 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
27 |
196418 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
28 |
317811 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
29 |
514229 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
30 |
832040 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
31 |
1346269 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
32 |
2178309 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
33 |
3524578 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
34 |
5702887 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
35 |
9227465 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
The
next graphs show what happens when n increases.
When n increases,
the first ratio, the ratio between each adjacent pair of numbers in the Fibonnaci Sequence, is approaching to 1.618033089 which
is the Golden Ratio |
|
|
|
When n increases, the first ratio,
the ratio between the n-th and the (n-2)-th terms of the
Fibonnaci Sequence, is approaching to 2.618033989
which is the square of Golden Ratio |
|
|
|
When n increases, the first ratio,
the ratio between the n-th and the (n-3)-th terms of the
Fibonnaci Sequence, is approaching 4.236067977
which is the cubic of Golden Ratio. |
|
|
|
When n increases, the first ratio,
the ratio between the n-th and the (n-4)-th terms of the
Fibonnaci Sequence, is approaching 6.854101966 |
|
Therefore, as n increases,
we observe that the limits of the ratios above explored correspond to the Golden Ratio, Square of Golden Ratio,
Cubic Golden Ratio, 4th power of Golden Ratio, etc. respectively. |
Lucas Sequence |
|||||
n |
Lucas Sequence |
|
|
|
|
1 |
3 |
3 |
|||
2 |
4 |
1.333333 |
4 |
||
3 |
7 |
1.75 |
2.333333 |
7 |
|
4 |
11 |
1.571429 |
2.75 |
3.666667 |
11 |
5 |
18 |
1.636364 |
2.571429 |
4.5 |
6 |
6 |
29 |
1.611111 |
2.636364 |
4.142857 |
7.25 |
7 |
47 |
1.62069 |
2.611111 |
4.272727 |
6.714286 |
8 |
76 |
1.617021 |
2.62069 |
4.222222 |
6.909091 |
9 |
123 |
1.618421 |
2.617021 |
4.241379 |
6.833333 |
10 |
199 |
1.617886 |
2.618421 |
4.234043 |
6.862069 |
11 |
322 |
1.61809 |
2.617886 |
4.236842 |
6.851064 |
12 |
521 |
1.618012 |
2.61809 |
4.235772 |
6.855263 |
13 |
843 |
1.618042 |
2.618012 |
4.236181 |
6.853659 |
14 |
1364 |
1.618031 |
2.618042 |
4.236025 |
6.854271 |
15 |
2207 |
1.618035 |
2.618031 |
4.236084 |
6.854037 |
16 |
3571 |
1.618034 |
2.618035 |
4.236062 |
6.854127 |
17 |
5778 |
1.618034 |
2.618034 |
4.23607 |
6.854093 |
18 |
9349 |
1.618034 |
2.618034 |
4.236067 |
6.854106 |
19 |
15127 |
1.618034 |
2.618034 |
4.236068 |
6.854101 |
20 |
24476 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
21 |
39603 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
22 |
64079 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
23 |
103682 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
24 |
167761 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
25 |
271443 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
26 |
439204 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
27 |
710647 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
28 |
1149851 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
29 |
1860498 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
30 |
3010349 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
31 |
4870847 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
32 |
7881196 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
33 |
12752043 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
34 |
20633239 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
35 |
33385282 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
Even though in the Lucas Sequence the ratios start at
different numbers, as n increase the ratios approach to the same numbers of Fibonnaci Sequence: Golden Ratio, square of Golden Ratio,
Cubic of Golden Ratio, 4th power of golden Ratio respectively.
Others
sequences:
Sequence with and |
|||||
n |
Sequence |
|
|
|
|
1 |
5 |
1.25 |
|||
2 |
9 |
1.8 |
2.25 |
||
3 |
14 |
1.555556 |
2.8 |
3.5 |
|
4 |
23 |
1.642857 |
2.555556 |
4.6 |
5.75 |
5 |
37 |
1.608696 |
2.642857 |
4.111111 |
7.4 |
6 |
60 |
1.621622 |
2.608696 |
4.285714 |
6.666667 |
7 |
97 |
1.616667 |
2.621622 |
4.217391 |
6.928571 |
8 |
157 |
1.618557 |
2.616667 |
4.243243 |
6.826087 |
9 |
254 |
1.617834 |
2.618557 |
4.233333 |
6.864865 |
10 |
411 |
1.61811 |
2.617834 |
4.237113 |
6.85 |
11 |
665 |
1.618005 |
2.61811 |
4.235669 |
6.85567 |
12 |
1076 |
1.618045 |
2.618005 |
4.23622 |
6.853503 |
13 |
1741 |
1.61803 |
2.618045 |
4.23601 |
6.854331 |
14 |
2817 |
1.618036 |
2.61803 |
4.23609 |
6.854015 |
15 |
4558 |
1.618033 |
2.618036 |
4.236059 |
6.854135 |
16 |
7375 |
1.618034 |
2.618033 |
4.236071 |
6.854089 |
17 |
11933 |
1.618034 |
2.618034 |
4.236067 |
6.854107 |
18 |
19308 |
1.618034 |
2.618034 |
4.236068 |
6.8541 |
19 |
31241 |
1.618034 |
2.618034 |
4.236068 |
6.854103 |
20 |
50549 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
21 |
81790 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
22 |
132339 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
23 |
214129 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
24 |
346468 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
25 |
560597 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
26 |
907065 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
27 |
1467662 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
28 |
2374727 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
29 |
3842389 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
30 |
6217116 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
31 |
10059505 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
32 |
16276621 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
33 |
26336126 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
34 |
42612747 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
35 |
68948873 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
Sequence with and |
|||||
n |
1 |
|
|
|
|
1 |
7 |
7 |
|||
2 |
8 |
1.142857 |
8 |
||
3 |
15 |
1.875 |
2.142857 |
15 |
|
4 |
23 |
1.533333 |
2.875 |
3.285714 |
23 |
5 |
38 |
1.652174 |
2.533333 |
4.75 |
5.428571 |
6 |
61 |
1.605263 |
2.652174 |
4.066667 |
7.625 |
7 |
99 |
1.622951 |
2.605263 |
4.304348 |
6.6 |
8 |
160 |
1.616162 |
2.622951 |
4.210526 |
6.956522 |
9 |
259 |
1.61875 |
2.616162 |
4.245902 |
6.815789 |
10 |
419 |
1.617761 |
2.61875 |
4.232323 |
6.868852 |
11 |
678 |
1.618138 |
2.617761 |
4.2375 |
6.848485 |
12 |
1097 |
1.617994 |
2.618138 |
4.235521 |
6.85625 |
13 |
1775 |
1.618049 |
2.617994 |
4.236277 |
6.853282 |
14 |
2872 |
1.618028 |
2.618049 |
4.235988 |
6.854415 |
15 |
4647 |
1.618036 |
2.618028 |
4.236098 |
6.853982 |
16 |
7519 |
1.618033 |
2.618036 |
4.236056 |
6.854148 |
17 |
12166 |
1.618034 |
2.618033 |
4.236072 |
6.854085 |
18 |
19685 |
1.618034 |
2.618034 |
4.236066 |
6.854109 |
19 |
31851 |
1.618034 |
2.618034 |
4.236069 |
6.854099 |
20 |
51536 |
1.618034 |
2.618034 |
4.236068 |
6.854103 |
21 |
83387 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
22 |
134923 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
23 |
218310 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
24 |
353233 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
25 |
571543 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
26 |
924776 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
27 |
1496319 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
28 |
2421095 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
29 |
3917414 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
30 |
6338509 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
31 |
10255923 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
32 |
16594432 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
33 |
26850355 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
34 |
43444787 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
35 |
70295142 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
Sequence with and |
|||||
n |
Sequence |
|
|
|
|
1 |
3 |
-3 |
|||
2 |
2 |
0.666667 |
-2 |
||
3 |
5 |
2.5 |
1.666667 |
-5 |
|
4 |
7 |
1.4 |
3.5 |
2.333333 |
-7 |
5 |
12 |
1.714286 |
2.4 |
6 |
4 |
6 |
19 |
1.583333 |
2.714286 |
3.8 |
9.5 |
7 |
31 |
1.631579 |
2.583333 |
4.428571 |
6.2 |
8 |
50 |
1.612903 |
2.631579 |
4.166667 |
7.142857 |
9 |
81 |
1.62 |
2.612903 |
4.263158 |
6.75 |
10 |
131 |
1.617284 |
2.62 |
4.225806 |
6.894737 |
11 |
212 |
1.618321 |
2.617284 |
4.24 |
6.83871 |
12 |
343 |
1.617925 |
2.618321 |
4.234568 |
6.86 |
13 |
555 |
1.618076 |
2.617925 |
4.236641 |
6.851852 |
14 |
898 |
1.618018 |
2.618076 |
4.235849 |
6.854962 |
15 |
1453 |
1.61804 |
2.618018 |
4.236152 |
6.853774 |
16 |
2351 |
1.618032 |
2.61804 |
4.236036 |
6.854227 |
17 |
3804 |
1.618035 |
2.618032 |
4.23608 |
6.854054 |
18 |
6155 |
1.618034 |
2.618035 |
4.236063 |
6.85412 |
19 |
9959 |
1.618034 |
2.618034 |
4.23607 |
6.854095 |
20 |
16114 |
1.618034 |
2.618034 |
4.236067 |
6.854105 |
21 |
26073 |
1.618034 |
2.618034 |
4.236068 |
6.854101 |
22 |
42187 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
23 |
68260 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
24 |
110447 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
25 |
178707 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
26 |
289154 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
27 |
467861 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
28 |
757015 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
29 |
1224876 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
30 |
1981891 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
31 |
3206767 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
32 |
5188658 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
33 |
8395425 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
34 |
13584083 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
35 |
21979508 |
1.618034 |
2.618034 |
4.236068 |
6.854102 |
Summary |
As we can see, it does not matter which are the numbers and , the ratios are approaching to the same limits as those in the Fibonnaci Sequence, which are Golden Ratio, Square of
Golden Ratio, Cubic Golden Ratio, 4th power of Golden Ratio respectively. Why do the ratios in those
sequences converge to the same limits as those of the Fibonnaci
Sequence? It is because the Fibonnaci sequence is a
recursive sequence, so it does not matter what the initial numbers are. |
Note: All graphs on this webpage were made with
Microsoft Office Excel |