

Areas of a Rectangle By Leighton McIntyre

Goal to prove the equality of different areas of a rectangle

Problem

Make Conjectures and proofs for the given sections below:

1) Proof that Area \triangle DEC = Area \triangle DEA

Let length CD = x and FD = xt where xt is the distance along FD corresponding to a given distance DE .Let length AD = y and length GD = yt, where yt is the corresponding distance to a given length DE along the diagonal DB.

The ratio of the segments are x:xt and y:yt and BD:BE are the same because rectangle ABCD is similar to rectangle FEGD by shared diagonal and inscribed rectangle.

Area \triangle DEC = $\frac{1}{2}^{xyt}$, Area \triangle DEA = $\frac{1}{2}^{yxt}$

Thus both triangles have equal areas.

Proof that Area \triangle **AEB** = **Area** \triangle **BEC**

Let length AB = x and IB = xt where xt is the distance along IB corresponding to a given distance DE on the diagonal .Let length CD = y and length HB = yt, where yt is the corresponding distance to a given length DE along the diagonal DB.

The ratio of the segments are x:xt and y:yt and BD:BE are the same because rectangle ABCD is similar to rectangle FEGD by shared diagonal and inscribed rectangle.

Area
$$\triangle$$
 AEB = $\frac{1}{2}^{xyt}$, Area \triangle BEC = $\frac{1}{2}^{yxt}$

Thus both triangles have equal areas.

2) Proof of point where that Area \triangle CED = \triangle AEB +Area \triangle BEC

Let the corresponding parts xt and yt be the similar as marked in question 2.

Area of \triangle **CED** = $\frac{1}{2}x(y-yt) = \frac{1}{2}xy(1-t)$

Area of \triangle **AEB** = $\frac{1}{2}$ ^{*xyt*}

Area of \triangle **CEB** = $\frac{1}{2}^{yxt}$

Area of \triangle AEB + Area of \triangle CEB = $\frac{1}{2}yxt$ + $\frac{1}{2}xyt$ = xyt

When Area of Area of \triangle **CED** = Area of \triangle **AEB** + Area of \triangle **CEB** : $\frac{1}{2}xy(1-t)$ xyt =

$$\frac{1}{2}^{(1-t)} t = t$$

$$= \frac{1}{2} - \frac{1}{2} t = t$$

$$\frac{1}{2} = \frac{3}{2}^{t}$$

t = 1/3

3) Area \triangle CED = \triangle AEB +Area \triangle BEC when point E is 1/3 of the way up along the diagonal from point B.

4) Paper folding Instructions

The paper folding instructions for getting Area \triangle CED = \triangle AEB +Area \triangle BEC are shown as steps 1,2,3 and 4 in the diagram above

fold along the diagonal BD

fold along the midpoints of the short sides of the paper

Fold along the point C and the short side midpoint opposite to C. Let E be the intersection of the folds in steps 1 and 3.

Fold through points A and E.