

## Areas of a Rectangle By Leighton McIntyre

Goal to prove the equality of different areas of a rectangle

## Problem

Make Conjectures and proofs for the given sections below:

## 1) Proof that Area $\Delta$ DEC $=\operatorname{Area} \Delta$ DEA



Let length $\mathrm{CD}=\mathrm{x}$ and $\mathrm{FD}=\mathrm{xt}$ where xt is the distance along FD corresponding to a given distance DE .Let length $\mathrm{AD}=\mathrm{y}$ and length $\mathrm{GD}=\mathrm{yt}$, where yt is the corresponding distance to a given length DE along the diagonal DB.
The ratio of the segments are $x: x t$ and $y: y t$ and BD:BE are the same because rectangle ABCD is similar to rectangle FEGD by shared diagonal and inscribed rectangle.
Area $\Delta$ DEC $=\frac{1}{2} x y t$, Area $\Delta$ DEA $=\frac{1}{2} y x t$

Thus both triangles have equal areas.

## Proof that Area $\Delta \mathrm{AEB}=\operatorname{Area} \Delta \mathrm{BEC}$



Let length $\mathrm{AB}=\mathrm{x}$ and $\mathrm{IB}=\mathrm{xt}$ where xt is the distance along IB corresponding to a given distance DE on the diagonal .Let length $\mathrm{CD}=\mathrm{y}$ and length $\mathrm{HB}=\mathrm{yt}$, where yt is the corresponding distance to a given length DE along the diagonal DB.

The ratio of the segments are $x: x t$ and $y: y t$ and $B D: B E$ are the same because rectangle ABCD is similar to rectangle FEGD by shared diagonal and inscribed rectangle.
Area $\Delta \mathrm{AEB}=\frac{1}{2} x y t$, Area $\Delta \mathrm{BEC}=\frac{1}{2} y x t$

Thus both triangles have equal areas.
2) Proof of point where that Area $\Delta$ CED $=\Delta$ AEB +Area $\triangle$ BEC


Let the corresponding parts xt and yt be the similar as marked in question 2.
Area of $\Delta \mathbf{C E D}=\frac{1}{2}^{x(y-y t)}=\frac{1}{2}^{x y(1-t)}$

Area of $\Delta \mathbf{A E B}=\frac{1}{2} x y t$

Area of $\Delta \mathbf{C E B}=\frac{1}{2} y x t$
Area of $\Delta \mathbf{A E B}+$ Area of $\Delta \mathbf{C E B}=\frac{1}{2}^{y x t}+\frac{1}{2} x y t=x y t$
When Area of Area of $\Delta \mathbf{C E D}=$ Area of $\Delta$ AEB +
Area of $\Delta$ CEB : ${ }^{\frac{1}{2} x y(1-t)} \quad$ xyt
$=$
$\frac{1}{2}(1-t)$
$=$
$1 / 2-1 / 2 t=t$
$1 / 2=\frac{3}{2} t$
$t=1 / 3$
3) Area $\Delta \mathbf{C E D}=\Delta$ AEB + Area $\Delta$ BEC when point $E$ is $1 / 3$ of the way up along the diagonal from point $B$.

## 4) Paper folding Instructions



The paper folding instructions for getting Area $\Delta$ CED
$=\Delta \mathrm{AEB}+$ Area $\Delta \mathrm{BEC}$ are shown as steps $1,2,3$ and 4 in the diagram above
fold along the diagonal BD
fold along the midpoints of the short sides of the paper

Fold along the point C and the short side midpoint opposite to C . Let E be the intersection of the folds in steps 1 and 3 .
Fold through points A and E.

